Hydrodynamic Analysis of Flapping Foils for Propulsion of Shallow-Water and Near-Surface Underwater Vehicles

Author(s):  
Palaniswamy Ananthakrishnan

Hydrodynamic performance of flapping foils for the propulsion or station keeping of near-surface underwater vehicles is examined numerically. The objective of the project is to determine effects of momentum fluxes associated with the vortex wake, radiating waves and their interactions on the thrust and efficiency of the flapping foils. The fully nonlinear viscous flow problem is solved using a finite difference method based on boundary-fitted coordinates. Various flapping foil mechanisms, such as of a single foil, twin foil and hinge-connected double foil, are considered. Results are obtained for a range of key variables such as the Strouhal and Froude numbers, unsteady parameter, and the depth of foil submergence. New results obtained in this work reveal complex interactions between the flap-motion generated waves and vortices, in particular, how the deforming free surface above the vehicle and radiating surface waves could affect the generation and evolution of shed vortices and the thrust-generating capacity of flapping foils. Necessary conditions for high propulsive efficiency are found to be (i) Strouhal number between 0.25 and 0.35 and (ii) oscillation at supercritical frequency, i.e., τ > 0.25. At the critical frequency τ = 0.25 the efficiency is found to be low particularly when the body is very to the free surface. Upstream wave propagation at sub-critical frequency τ < 0.25 results in the loss of propulsive efficiency. Mechanisms affecting the efficiency are amplified by the foil proximity to the surface. In the case of flapping hinged double foil, in-phase oscillation of the foils results in high thrust while out-of phase flapping produces nearly null mean thrust. Flapping of twin foil in the “clapping mode” results in a pulsating wake jet yielding a large thrust but requiring large torque and hence at low efficiency. Efficiencies upto 80% are found in the simulations with single foil.

1993 ◽  
Vol 185 (1) ◽  
pp. 179-193 ◽  
Author(s):  
F. E. Fish

The power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus) were determined from a hydromechanical model. The propulsive movements were filmed as dolphins swam in large pools. Dolphins swam at velocities of 1.2-6.0 m s-1. Propulsion was provided by dorsoventral oscillations of the posterior body and flukes. The maximum angle of attack of the flukes showed a linear decrease with velocity, whereas the frequency of the propulsive cycle increased linearly with increasing velocity. Amplitude was 20 % of body length and remained constant with velocity. Propulsive efficiency was 0.81. The thrust power computed was within physiological limits. After correction for effects due to swimming depth, the coefficient of drag was found to be 3.2 times higher than the theoretical minimum assuming turbulent boundary conditions. The motions of the body and flukes are primarily responsible for the increased drag. This analysis supports other studies that indicate that bottlenose dolphins, although well adapted for efficient high- performance swimming, show no unusual hydrodynamic performance.


Author(s):  
R. V. Chima

In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1. The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2. The body force model was used to simulate large partspan splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3. The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.


1966 ◽  
Vol 181 (1) ◽  
pp. 687-705 ◽  
Author(s):  
P. L. Barlow

It has previously been suggested that the reduction in cutting forces obtained by the presence of fluids such as CCl4 on the backface or free surface of the forming chip was due to diffusion of the fluid into the body of the chip in the region of the shear zone. In the present work, experiments with carbon tetrachloride tagged with carbon-14 and with carbon tetrachloride tagged with chlorine-36 were performed with the object of assessing the extent of diffusion of lubricants into the chip when present on the free surface only. The results obtained disprove former hypotheses and suggest that the reduced cutting force is due solely to chemical reaction at the surface of the chip. Confirmation of the sensitivity of the surface of the deforming shear zone to change in surface condition was obtained by removing metal from this region by an electropolishing technique during slow speed cutting. By varying the electropolishing conditions increased or decreased cutting forces could be obtained. It is proposed that the result both of chemical reaction at the surface and of surface removal is to reduce the strain-hardening rate of the metal undergoing shear by reducing the surface barrier to the flow of dislocations out of the metal. The association of the surface reaction of carbon tetrachloride with a change in the strain-hardening characteristics of the metal in the shear zone leads to a classification of the backface phenomenon as a Rehbinder effect and enables this effect to be more closely defined than was hitherto possible. Evidence is also presented which indicates that the backface effect does not contribute to the reduction in cutting forces during rakeface lubrication and is therefore unimportant in practice where flood lubrication of the cutting region invariably occurs.


Author(s):  
Domenica Mirauda ◽  
Antonio Volpe Plantamura ◽  
Stefano Malavasi

This work analyzes the effects of the interaction between an oscillating sphere and free surface flows through the reconstruction of the flow field around the body and the analysis of the displacements. The experiments were performed in an open water channel, where the sphere had three different boundary conditions in respect to the flow, defined as h* (the ratio between the distance of the sphere upper surface from the free surface and the sphere diameter). A quasi-symmetric condition at h* = 2, with the sphere equally distant from the free surface and the channel bottom, and two conditions of asymmetric bounded flow, one with the sphere located at a distance of 0.003m from the bottom at h* = 3.97 and the other with the sphere close to the free surface at h* = 0, were considered. The sphere was free to move in two directions, streamwise (x) and transverse to the flow (y), and was characterized by values of mass ratio, m* = 1.34 (ratio between the system mass and the displaced fluid mass), and damping ratio, ζ = 0.004. The comparison between the results of the analyzed boundary conditions has shown the strong influence of the free surface on the evolution of the vortex structures downstream the obstacle.


1987 ◽  
Vol 24 (6) ◽  
pp. 1086-1097 ◽  
Author(s):  
Mel R. Stauffer ◽  
Don J. Gendzwill

Fractures in Late Cretaceous to Late Pleistocene sediments in Saskatchewan, eastern Montana, and western North Dakota form two vertical, orthogonal sets trending northeast–southwest and northwest–southeast. The pattern is consistent, regardless of rock type or age (except for concretionary sandstone). Both sets appear to be extensional in origin and are similar in character to joints in Alberta. Modem stream valleys also trend in the same two dominant directions and may be controlled by the underlying fractures.Elevation variations on the sub-Mannville (Early Cretaceous) unconformity form a rectilinear pattern also parallel to the fracture sets, suggesting that fracturing was initiated at least as early as Late Jurassic. It may have begun earlier, but there are insufficient data at present to extend the time of initiation.We interpret the fractures as the result of vertical uplift together with plate motion: the westward drift of North America. The northeast–southwest-directed maximum principal horizontal stress of the midcontinent stress field is generated by viscous drag effects between the North American plate and the mantle. Vertical uplift, erosion, or both together produce a horizontal tensile state in near-surface materials, and with the addition of a directed horizontal stress through plate motion, vertical tension cracks are generated parallel to that horizontal stress (northeast–southwest). Nearly instantaneous elastic rebound results in the production of second-order joints (northwest–southeast) perpendicular to the first. In this manner, the body of rock is being subjected with time to complex alternation of northeast–southwest and northwest–southeast horizontal stresses, resulting in the continuous and contemporaneous production of two perpendicular extensional joint sets.


Author(s):  
Stefan Daum ◽  
Martin Greve ◽  
Renato Skejic

The present study is focused on performance issues of underwater vehicles near the free surface and gives insight into the analysis of a speed loss in regular deep water waves. Predictions of the speed loss are based on the evaluation of the total resistance and effective power in calm water and preselected regular wave fields w.r.t. the non-dimensional wave to body length ratio. It has been assumed that the water is sufficiently deep and that the vehicle is operating in a range of small to moderate Froude numbers by moving forward on a straight-line course with a defined encounter angle of incident regular waves. A modified version of the Doctors & Days [1] method as presented in Skejic and Jullumstrø [2] is used for the determination of the total resistance and consequently the effective power. In particular, the wave-making resistance is estimated by using different approaches covering simplified methods, i.e. Michell’s thin ship theory with the inclusion of viscosity effects Tuck [3] and Lazauskas [4] as well as boundary element methods, i.e. 3D Rankine source calculations according to Hess and Smith [5]. These methods are based on the linear potential fluid flow and are compared to fully viscous finite volume methods for selected geometries. The wave resistance models are verified and validated by published data of a prolate spheroid and one appropriate axisymmetric submarine model. Added resistance in regular deep water waves is obtained through evaluation of the surge mean second-order wave load. For this purpose, two different theoretical models based on potential flow theory are used: Loukakis and Sclavounos [6] and Salvesen et. al. [7]. The considered theories cover the whole range of important wavelengths for an underwater vehicle advancing in close proximity to the free surface. Comparisons between the outlined wave load theories and available theoretical and experimental data were carried out for a submerged submarine and a horizontal cylinder. Finally, the effective power and speed loss are discussed from a submarine operational point of view where the mentioned parameters directly influence mission requirements in a seaway. All presented results are carried out from the perspective of accuracy and efficiency within common engineering practice. By concluding current investigations in regular waves an outlook will be drawn to the application of advancing underwater vehicles in more realistic sea conditions.


2013 ◽  
Vol 10 (2) ◽  
pp. 99-108 ◽  
Author(s):  
J. A. Esfahani ◽  
E. Barati ◽  
Hamid Reza Karbasian

In flapping underwater vehicles the propulsive performance of harmonically sinusoidal heaving and pitching foil will be degraded by some awkward changes in effective angle of attack profile, as the Strouhal number increases. This paper surveys different angle of attack profiles (Sinusoidal, Square, Sawtooth and Cosine) and considers their thrust production ability. In the wide range of Strouhal numbers, thrust production of Square profile is considerable but it has a discontinuity in heave velocity profile, in which an infinite acceleration exists. This problem poses a significant defect in control of flapping foil. A novel profile function is proposed to omit sharp changes in heave velocity and acceleration. Furthermore, an optimum profile is found for different Strouhal numbers with respect to Square angle of attack profile.DOI: http://dx.doi.org/10.3329/jname.v10i2.14229


2001 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Thermocapillary convection driven by a uniform heat flux in an open cylindrical container of unit aspect ratio is investigated by two- and three-dimensional numerical simulations. The undeformable free surface is either flat or curved as determined by the fluid volume (V ≤ 1) and the Young-Laplace equation. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re) with either flat or curved interfaces. Only steady convection is possible in strictly axisymmetric computations. Transition to oscillatory three-dimensional motions occurs as Re increases beyond a critical value dependent on Pr and V. With a flat free surface (V = 1), two-lobed pulsating waves are found on the free surface and prevail with increasing Re. While the critical Re increases with increasing Pr, the critical frequency decreases. In the case of a concave surface, four azimuthal waves are found rotating clockwise on the surface. The critical Re decreases with increasing fluid volume, and the critical frequency is found to increase. The numerical results with either flat or curved free surfaces are in good quantitative agreement with space experiments.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


1990 ◽  
Vol 80 (6B) ◽  
pp. 2032-2052 ◽  
Author(s):  
D. C. Jepsen ◽  
B. L. N. Kennett

Abstract Both phased array techniques for single-component sensors and vectorial analysis of three-component recordings can provide estimates of the azimuth and slowness of seismic phases. However, a combination of these approaches provides a more powerful tool to estimate the propagation characteristics of different seismic phases at regional distances. Conventional approaches to the analysis of three-component seismic records endeavor to exploit the apparent angles of propagation in horizontal and vertical planes as well as the polarization of the waves. The basic assumption is that for a given time window there is a dominant wavetype (e.g., a P wave) traveling in a particular direction arriving at the seismic station. By testing a range of characteristics of the three-component records, a set of rules can be established for classifying much of the seismogram in terms of wavetype and direction. It is, however, difficult to recognize SH waves in the presence of other wavetypes. Problems also arise when more than one signal (in either wavetype or direction) arrive in the same window. The stability and robustness of the classification scheme is much improved when records from an array of three-component sensors are combined. For a set of three-component instruments forming part of a larger array, it is possible to estimate the slowness and azimuth of arrivals from the main array and then extract the relative proportions of the current P-, SV-, and SH-wave contributions to the seismogram. This form of wavetype decomposition depends on a model of near-surface propagation. A convenient choice for hard-rock sites is to include just the effect of the free surface, which generates a frequency-independent operation on the three-component seismograms and which is not very sensitive to surface velocities. This approach generates good estimates of the character of the S wavefield, because the phase distortion of SV induced by the free surface can be removed. The method has been successfully applied to regional seismograms recorded at the medium aperture Warramunga array in northern Australia, and the two small arrays NORESS and ARCESS in Norway, which were designed for studies of regional phases. The new wavefield decomposition scheme provides results in which the relative proportions of P, SV, and SH waves as a function of time can be compared without the distortion imposed by free surface amplification. Such information can provide a useful adjunct to existing measures of signal character used in source discrimination.


Sign in / Sign up

Export Citation Format

Share Document