On the Energy Absorption of Combined Foam-Honeycomb Layered Structures

Author(s):  
Dora Karagiozova ◽  
Marcilio Alves

Analytical and numerical analyses are carried in order to reveal the importance of the topology of the cellular materials for their dynamic compaction. The aim is to distinguish between the deformation mechanisms and energy absorption of materials, which exhibit structural softening, such as out-of-plane loaded honeycomb, and structural hardening (foam). It is shown that the dynamic compaction of honeycombs does not obey the law of shock wave propagation and a new phenomenological model of the velocity attenuation in out-of plane loaded honeycomb is proposed. Comparisons with some currently available theoretical models of the dynamic compaction of cellular materials are discussed when paying attention to the effect of the material homogenization of the honeycomb on their response to impact loading. A numerical analysis of a bi-layer cellular structure comprising layers with dissimilar constitutive properties is carried out to reveal the possibility for the peak load reduction in cellular structures when subjected to impact loading. In the reported examples, a foam material (Alporas with density of 245 kg/m3) and hexagonal honeycomb made of aluminium alloy AA5056 and having densities of 60.46 kg/m3 and 96 kg/m3 are used.

Author(s):  
Huineng Wang ◽  
Yanfeng Guo ◽  
Yungang Fu ◽  
Dan Li

This study introduces the opinion of the corrugation hierarchy to develop the second-order corrugation paperboard, and explore the deformation characteristics, yield strength, and energy absorbing capacity under out-of-plane static evenly compression loading by experimental and analytical approaches. On the basis of the inclined-straight strut elements of corrugation unit and plastic hinge lines, the yield and crushing strengths of corrugation unit were analyzed. This study shows that as the compressive stress increases, the second-order corrugation core layer is firstly crushed, and the first-order corrugation structures gradually compacted until the failure of entire structure. The corrugation type has an obvious influence on the yield strength of the corrugation sandwich panel, and the yield strength of B-flute corrugation sandwich panel is wholly higher than that of the C-flute structure. At the same compression rate, the flute type has a significant impact on energy absorption, and the C-flute second-order corrugation sandwich panel has better bearing capacity than the B-flute structure. The second-order corrugation sandwich panel has a better bearing capacity than the first-order structure. The static compression rate has little effect on the yield strength and deformation mode. However, with the increase of the static compression rate, the corrugation sandwich panel has a better cushioning energy absorption and material utilization rate.


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


2021 ◽  
Vol 226 ◽  
pp. 111350
Author(s):  
Jinliang Song ◽  
Dawei Hu ◽  
Shengmin Luo ◽  
Wanshu Liu ◽  
Dongfang Wang ◽  
...  

2011 ◽  
Vol 13 (11) ◽  
pp. 1042-1049 ◽  
Author(s):  
Volker Presser ◽  
Stefanie Schultheiß ◽  
Christian Kohler ◽  
Christoph Berthold ◽  
Klaus G. Nickel ◽  
...  

2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


2019 ◽  
Vol 13 (3) ◽  
pp. 3274-3282 ◽  
Author(s):  
Hanane Dagdougui ◽  
Ahmed Ouammi ◽  
Louis A. Dessaint

2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


Sign in / Sign up

Export Citation Format

Share Document