Influence of the Draft Condition on Vortex-Induced Motions of a Semi-Submersible Platform With Four Square Columns

Author(s):  
Mingyue Liu ◽  
Longfei Xiao ◽  
Haining Lu ◽  
Jun Li ◽  
Xiaochuan Yu

The vortex-induced motions (VIM) phenomenon of semi-submersibles has drawn increasing attention with the development (mainly increase of column size) of new semi-submersibles. Due to the elongated submerged columns and the enlarged projected area to current, deep-draft semi-submersible platforms are susceptible to higher in-line drag forces and transverse vortex-induced lift forces, resulting in considerable horizontal motions in a current environment. In order to check the influence of draft conditions on VIM of the semi-submersible platform with four square columns, experimental investigations with five draft ratios varying from 0.87 to 1.90 were carried out in a towing tank. The 6-degree-of-freedom (6-DOF) motions of the model were recorded by the motion acquisition system, in synchronisation with restoring forces provided by four load cells, one for each horizontal mooring spring. This paper discusses the dynamic behavior of a semi-submersible platform in five different draft conditions, including coupled motions at the water surface plane, drag and lift forces, and spectral analysis. It is shown that the largest transverse amplitudes are around 75% of the column width in the range of 6.0 ≤ Ur ≤ 8.0 for the deep-draft semi-submersible (H/L = 1.90). With 50% of the immerged column height of the deep-draft model, a 30% decrease in the transverse motion amplitude can be seen. Furthermore, the effects of the draft condition on yaw responses and current loads are also addressed.

Author(s):  
Ugur Can ◽  
Sakir Bal

In this study, it was aimed to obtain an accurate extrapolation method to compute lift and drag forces of high-speed vessels at full-scale by using CFD (Computational Fluid Dynamics) based GEOSIM (GEOmetrically SIMilar) method which is valid for both fully planing and semi-planing regimes. Athena R/V 5365 bare hull form with a skeg which is a semi-displacement type of high-speed vessel was selected with a model family for hydrodynamic analyses under captive and free to sinkage/trim conditions. Total drag and lift forces have been computed for a generated GEOSIM family of this form at three different model scales and full-scale for Fr = 0.8 by an unsteady RANS (Reynolds Averaged Navier–Stokes) solver. k–ε turbulence model was used to simulate the turbulent flow around the hulls, and both DFBI (Dynamic Fluid Body Interaction) and overset mesh technique were carried out to model the heave and pitch motions under free to sinkage/trim condition. The computational results of the model family were used to get “drag-lift ratio curve” for Athena hull at a fixed Fr number and so the corresponding results at full scale were predicted by extrapolating those of model scales in the form of a non-dimensional ratios of drag-lift forces. Then the extrapolated full-scale results calculated by modified GEOSIM method were compared with those of full-scale CFD and obtained by Froude extrapolation technique. The modified GEOSIM method has been found to be successful to compute the main forces (lift and drag) acting on high-speed vessels as a single coefficient at full scale. The method also works accurately both under fully and semi-planing conditions.


Author(s):  
Juan Gregorio Hortelano-Capetillo ◽  
J. Merced Martínez-Vázquez ◽  
José Luis Zúñiga-Cerroblanco ◽  
Gabriel Rodriguez-Ortiz

In this research, aerodynamic tests were carried out using Solidworks Flow Simulation software on a Sedan-type car, implementing different sizes of lip-type spoilers at the rear to obtain the results of the drag and lift coefficients produced by movement. of the air regardless of the design at the rear of the car and analyze if there was improvement in aerodynamics. Analyzing the results, it is obtained that the aerodynamics of the car is improved when a lip-type spoiler is fitted, the lift forces were reduced, whereas the drag forces remained constant for all the different designs.


Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting-wear or fatigue. Detailed flow and vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Some of this work has already been done. The distributions of both void fraction and bubble velocity in rotated-triangular tube bundles were obtained. Somewhat unexpected but significant quasi-periodic forces in both the drag and lift directions were measured. The present work aims at understanding the nature of such unexpected drag and lift quasi-periodic forces. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. Fiber-optic probes were developed to measure local void fraction. Both the dynamic lift and drag forces were measured with a strain gage instrumented cylinder. The investigation showed that the quasi-periodic drag and lift forces are generated by different mechanisms that have not been observed so far. The quasi-periodic drag forces appear related to the momentum flux fluctuations in the main flow path between the cylinders. The quasi-periodic lift forces, on the other hand, are mostly correlated to oscillations in the wake of the cylinders. The relationships between the lift or drag forces and the dynamic characteristics of two-phase flow are established through fluid mechanics momentum equations. The quasi-periodic lift forces are related to local void fraction measurements in the unsteady wake area between upstream and downstream cylinders. The quasi-periodic drag forces correlate well with similar measurements in the main flow stream between cylinders.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Detailed flow and vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Some of this work has already been done. The distributions of both void fraction and bubble velocity in rotated-triangular tube bundles were obtained. Somewhat unexpected but significant quasiperiodic forces in both the drag and lift directions were measured. The present work aims at understanding the nature of such unexpected drag and lift quasiperiodic forces. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. Fiber-optic probes were developed to measure local void fraction. Both the dynamic lift and drag forces were measured with a strain gage instrumented cylinder. The investigation showed that the quasiperiodic drag and lift forces are generated by different mechanisms that have not been previously observed. The quasiperiodic drag forces appear related to the momentum flux fluctuations in the main flow path between the cylinders. The quasiperiodic lift forces, on the other hand, are mostly correlated to oscillations in the wake of the cylinders. The quasiperiodic lift forces are related to local void fraction measurements in the unsteady wake area between upstream and downstream cylinders. The quasiperiodic drag forces correlate well with similar measurements in the main flow stream between cylinders.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Alfred von Loebbecke ◽  
Rajat Mittal

A computational fluid dynamics (CFD) based analysis of the propulsive forces generated by two distinct styles of arm-pulls in front-crawl as well as backstroke is presented in this Technical Brief. Realistic models of the arm pulling through water are created by combining underwater video footage and laser-scans of an arm with computer animation. The contributions of drag and lift forces on the arm to thrust are computed from CFD, and it is found that lift forces provide a dominant contribution to thrust for all the arm-pull styles examined. However, contrary to accepted notions in swimming, pronounced sculling (lateral motion) not only does not increase the contribution of lift forces on the hand to overall thrust, it decreases the contribution of drag forces to thrust. Consequently, pronounced sculling seems to reduce the effectiveness of the arm-pull.


Author(s):  
M. R. Meigounpoory ◽  
A. Rahi ◽  
A. Mirbozorgi

The drag and lift forces acting on a rotating impenetrable spherical suspended nano-particle in a homogeneous uniform flow are numerically studied by means of a three-dimensional numerical simulation with slip boundary condition. The effects of both the slip coefficient and rotational speed of the nanosphere on the drag and lift forces are investigated for Reynolds numbers in the range of 0.1 < Re < 100. Increase of rotation increases the drag and lift force exerted by flow at the surface of nano-sphere. By increasing slip coefficient the values of drag and lift coefficients decreases. At full slip condition, rotation of the nano-sphere has not significant effects on the drag and lift coefficient values moreover the lift coefficient of flow around the rotating spherical particle will be vanished. Present numerical results at no-slip condition are in good agreements with certain results of flow around of rotating sphere.


2018 ◽  
Vol 27 (4) ◽  
pp. 474-488 ◽  
Author(s):  
A. A. Gavrilov ◽  
K. A. Finnikov ◽  
Ya. S. Ignatenko ◽  
O. B. Bocharov ◽  
R. May

Author(s):  
E. S. Perrot ◽  
N. W. Mureithi ◽  
M. J. Pettigrew ◽  
G. Ricciardi

This paper presents test results of vibration forces in a normal triangular tube bundle subjected to air-water cross-flow. The dynamic lift and drag forces were measured with strain gage instrumented cylinders. The array has a pitch-to-diameter ratio of 1.5, and the tube diameter is 38 mm. A wide range of void fraction and fluid velocities were tested. The experiments revealed significant forces in both the drag and lift directions. Constant frequency and quasi-periodic fluid forces were found in addition to random excitation. These forces were analyzed and characterized to understand their origins. The forces were found to be dependent on the position of the cylinder within the bundle. The results are compared with those obtained with flexible cylinders in the same tube bundle and to those for a rotated triangular tube bundle. These comparisons reveal the influence of quasi-periodic forces on tube motions.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3346
Author(s):  
Yuan-Shiang Tsai ◽  
Der-Chang Lo

The air-water two-phase flow model is developed to study the transformation of monochromatic waves passing over the submerged structure. The level set method is employed to describe the motion of the interface while the effect of the immersed object on the fluid is resolved using the ghost-cell immersed boundary method. The computational domain integrated with the air-water and fluid-solid phases allows the use of uniform Cartesian grids. The model simulates the wave generation, wave decomposition over a submerged trapezoidal breakwater, and the formation of the vortices as well as the drag and lift forces caused by the surface waves over three different configurations of the submerged structures. The numerical results show the capability of the present model to accurately track the deformation of the free surface. In addition, the variation of the drag and lift forces depend on the wavelength and wave induced vortices around the submerged object. Hence, the study observes that the triangular structure experiences the relatively small wave force.


Sign in / Sign up

Export Citation Format

Share Document