Ship Routing Based on the Kuroshio Current

Author(s):  
Chen Chen ◽  
Masashi Kashiwagi

As a strong western-boundary current, the Kuroshio Current has significant effects on the ship navigation in the East China Sea (ECS). To quantitatively know more about its influence, we present simulations of the ocean current in the North Pacific Ocean using the well-known Princeton Ocean Model (POM). The high-resolution current distributions could be applied to conduct numerical simulations of the ship navigation, which utilized a ship maneuvering model known as the Mathematical Maneuvering Group (MMG). Calculation of a container ship as well as a training ship have been conducted. The simulation results of both ships can show the significant effects of ocean currents on ship’s drifting as well as speed change, which could be used to optimize cost of both fuel and time by properly utilizing the current in ship routing.

2014 ◽  
Vol 5 (2) ◽  
pp. 79 ◽  
Author(s):  
Stefano Pierini ◽  
Henk A. Dijkstra ◽  
Mu Mu

Investigations of the intrinsic low-frequency variability and predictability of the Kuroshio Current and of its extension jet (the Kuroshio Extension, KE) are reviewed. The Kuroshio and KE in the North Pacific constitute a western boundary current system of great relevance from climatological and ecological viewpoints. Both the Kuroshio south of Japan and the KE display remarkable changes of bimodal character on interannual time scales that are believed to be intrinsic, i.e., basically generated by nonlinear oceanic mechanisms rather than by direct atmospheric forcing. Model studies of the Kuroshio and KE with climatological forcing are thus reviewed. Moreover, as these changes are chaotic, their predictability requires peculiar mathematical approaches: theoretical results concerning this important issue are therefore reviewed as well. Model studies aimed at determining the optimal precursors and optimally growing initial errors for the Kuroshio are described. Techniques based on Lyapunov exponents (including their Lagrangian extension) and on data assimilation techniques (namely, sequential importance sampling using a particle-filtering approach) are reviewed for the KE. The key problem of how to identify the areas where targeted observations can improve the forecast is also addressed. The role of wind forcing in triggering the KE oscillations is finally considered.


2013 ◽  
Vol 66 (6) ◽  
pp. 825-835 ◽  
Author(s):  
Yu-Chia Chang ◽  
Ruo-Shan Tseng ◽  
Guan-Yu Chen ◽  
Peter C Chu ◽  
Yung-Ting Shen

From the Surface Velocity Program (SVP) drifter current data, a detailed and complete track of strong ocean currents in the north-western Pacific is provided using the bin average method. The focus of this study is on the Kuroshio, the strong western boundary current of the North Pacific flowing northward along the east coast of Taiwan and then turning eastward off southern Japan. With its average flow speed of about 2 knots, the Kuroshio can significantly increase the ship's speed for a “super-slow-steaming” container ship travelling at speeds of 12 knots between the ports of Southeast Asia and Japan. By properly utilizing knowledge of strong ocean currents to follow the Kuroshio on the northbound runs and avoid it on the return trip, considerable fuel can be saved and the transit time can be reduced. In the future, the detailed Kuroshio saving-energy route could be built into electronic chart systems for all navigators and shipping routers.


Author(s):  
Tianyu Wang ◽  
Yan Du ◽  
Minyang Wang

AbstractAn Argo simulation system is used to provide synthetic Lagrangian trajectories based on the Estimating the Circulation and Climate of the Ocean model, Phase II (ECCO2). In combination with ambient Eulerian velocity at the reference layer (1000 m) from the model, quantitative metrics of the Lagrangian trajectory-derived velocities are computed. The result indicates that the biases induced by the derivation algorithm are strongly linked with ocean dynamics. In low latitudes, Ekman currents and vertically sheared geostrophic currents influence both the magnitude and the direction of the derivation velocity vectors. The maximal shear-induced biases exist near the equator with the amplitudes reaching up to about 1.2 cm s-1. The angles of the shear biases are pronounced in the low latitude oceans, ranging from -8° to 8°. Specifically, the study shows an overlooked bias from the float drifting motions that mainly occurs in the western boundary current and Antarctic circumpolar current (ACC) regions. In these regions, a recently reported horizontal acceleration measured via Lagrangian floats is significantly associated with the strong eddy-jet interactions. The acceleration could induce an overestimation of Eulerian current velocity magnitudes. For the common Argo floats with a 9-day float parking period, the derivation speed biases induced by velocity acceleration would be as large as 3 cm s-1, approximately 12% of the ambient velocity. It might have implications to map the mean mid-depth ocean currents from Argo trajectories, as well as understand the dynamics of eddy-jet interactions in the ocean.


2012 ◽  
Vol 105 ◽  
pp. 102-124 ◽  
Author(s):  
Yu-Heng Tseng ◽  
Mao-Lin Shen ◽  
Sen Jan ◽  
David E. Dietrich ◽  
Chia-Ping Chiang

2016 ◽  
Vol 33 (10) ◽  
pp. 2185-2203 ◽  
Author(s):  
Vigan Mensah ◽  
Magdalena Andres ◽  
Ren-Chieh Lien ◽  
Barry Ma ◽  
Craig M. Lee ◽  
...  

AbstractThis study presents amended procedures to process and map data collected by pressure-sensor-equipped inverted echo sounders (PIESs) in western boundary current regions. The modifications to the existing methodology, applied to observations of the Kuroshio from a PIES array deployed northeast of Luzon, Philippines, consist of substituting a hydrography-based mean travel time field for the PIES-based mean field and using two distinct gravest empirical mode (GEM) lookup tables across the front that separate water masses of South China Sea and North Pacific origin. In addition, this study presents a method to use time-mean velocities from acoustic Doppler current profilers (ADCPs) to reference (or “level”) the PIES-recorded pressures in order to obtain time series of absolute geostrophic velocity. Results derived from the PIES observations processed with the hydrography-based mean field and two GEMs are compared with hydrographic profiles sampled by Seagliders during the PIES observation period and with current velocity measured concurrently by a collocated ADCP array. The updated processing scheme leads to a 41% error decrease in the determination of the thermocline depth across the current, a 22% error decrease in baroclinic current velocity shear, and a 61% error decrease in baroclinic volume transports. The absolute volume transport time series derived from the leveled PIES array compares well with that obtained directly from the ADCPs with a root-mean-square difference of 3.0 Sv (1 Sv ≡ 106 m3 s–1), which is mainly attributed to the influence of ageostrophic processes on the ADCP-measured velocities that cannot be calculated from the PIES observations.


Ocean Science ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 831-852 ◽  
Author(s):  
Maria Belmonte Rivas ◽  
Ad Stoffelen

Abstract. This paper analyzes the differences between ERA-Interim and ERA5 surface winds fields relative to Advanced Scatterometer (ASCAT) ocean vector wind observations, after adjustment for the effects of atmospheric stability and density, using stress-equivalent winds (U10S) and air–sea relative motion using ocean current velocities. In terms of instantaneous root mean square (rms) wind speed agreement, ERA5 winds show a 20 % improvement relative to ERA-Interim and a performance similar to that of currently operational ECMWF forecasts. ERA5 also performs better than ERA-Interim in terms of mean and transient wind errors, wind divergence and wind stress curl biases. Yet, both ERA products show systematic errors in the partition of the wind kinetic energy into zonal and meridional, mean and transient components. ERA winds are characterized by excessive mean zonal winds (westerlies) with too-weak mean poleward flows in the midlatitudes and too-weak mean meridional winds (trades) in the tropics. ERA stress curl is too cyclonic in midlatitudes and high latitudes, with implications for Ekman upwelling estimates, and lacks detail in the representation of sea surface temperature (SST) gradient effects (along the equatorial cold tongues and Western Boundary Current (WBC) jets) and mesoscale convective airflows (along the Intertropical Convergence Zone and the warm flanks for the WBC jets). It is conjectured that large-scale mean wind biases in ERA are related to their lack of high-frequency (transient wind) variability, which should be promoting residual meridional circulations in the Ferrel and Hadley cells.


2009 ◽  
Vol 39 (8) ◽  
pp. 1888-1904 ◽  
Author(s):  
Barry A. Klinger ◽  
Carlos Cruz

Abstract A substantial component of North Atlantic Deep Water formation may be driven by westerly wind stress over the Southern Ocean. Variability of this wind stress on decadal time scales may lead to circulation variability far from the forcing region. The Hybrid Coordinate Ocean Model (HYCOM), a numerical ocean model, is used to investigate the spatial patterns and the time scales associated with such wind variability. The evolution of circulation and density anomalies is observed by comparing one 80-yr simulation, forced in part by relatively strong Southern Hemisphere westerlies, with a simulation driven by climatological wind. The volume transport anomaly takes about 10 yr to reach near-full strength in the entire Southern Hemisphere; however, in the Northern Hemisphere, it grows for the duration of the run. The Southern Hemisphere Indo-Pacific volume transport anomaly is about twice the strength of that found in the Atlantic. In the thermocline, water exits the southern westerlies belt in a broad flow that feeds a western boundary current (WBC) in both the Atlantic and Pacific Oceans. These WBCs in turn feed an Indonesian Throughflow from the Pacific and cyclonic gyres in the far north, which are broadly consistent with the Stommel–Arons theory. The deep return flow in each hemisphere is strongly affected by deep-sea ridges, which leads to a number of midocean “WBCs.” The wind perturbation causes isopycnals to sink over most of the basin. After about 20 yr, this sinking is very roughly uniform with latitude, though it varies by basin.


2008 ◽  
Vol 38 (6) ◽  
pp. 1327-1333 ◽  
Author(s):  
Stefano Pierini

Abstract The decadal chaotic relaxation oscillation obtained in a recent double-gyre model study of the Kuroshio Extension intrinsic low-frequency variability was found to compare surprisingly well with the real variability of the jet as revealed by altimeter data, despite the high degree of idealization of the model. In this note it is shown that elements of realism in the basin geometry, present in that study and absent in previous double-gyre models applied to the Kuroshio Extension, play a crucial role in shaping the low-frequency variability of the jet, and can explain the good performance of the model. A series of numerical experiments with different basin geometries of increasing degrees of simplicity are analyzed. If the schematic western boundary representing the coastline south of Japan is removed, the strong decadal variability completely disappears and only a very weak periodic oscillation about an elongated state of the jet is found. If the large zonal width of the basin (representing correctly the extension of the North Pacific Ocean) is reduced by a half, then the total meridional Sverdrup transport is reduced by the same factor, and so is the intensity of the Kuroshio and Oyashio western boundary currents: as a result, the modeled Kuroshio Extension is totally unrealistic in shape and is steady. If both simplifications are introduced the resulting jet is, again, totally unrealistic, yielding a weak periodic bimodal cycle. On the basis of these results, two main conclusions are drawn: (i) the introduction of appropriate geometrical elements of realism in double-gyre model studies of the Kuroshio Extension is essential, and (ii) the Kuroshio Extension intrinsic low-frequency variability would be dramatically different if the southwestern coastline of Japan were more meridionally oriented.


2006 ◽  
Vol 13 (1) ◽  
pp. 67-81 ◽  
Author(s):  
F. Uboldi ◽  
A. Trevisan

Abstract. Oceanic and atmospheric prediction is based on cyclic analysis-forecast systems that assimilate new observations as they become available. In such observationally forced systems, errors amplify depending on their components along the unstable directions; these can be estimated by Breeding on the Data Assimilation System (BDAS). Assimilation in the Unstable Subspace (AUS) uses the available observations to estimate the amplitude of the unstable structures (computed by BDAS), present in the forecast error field, in order to eliminate them and to control the error growth. For this purpose, it is crucial that the observational network can detect the unstable structures that are active in the system. These concepts are demonstrated here by twin experiments with a large state dimension, primitive equation ocean model and an observational network having a fixed and an adaptive component. The latter consists of observations taken each time at different locations, chosen to target the estimated instabilities, whose positions and features depend on the dynamical characteristics of the flow. The adaptive placement and the dynamically consistent assimilation of observations (both relying upon the estimate of the unstable directions of the data-forced system), allow to obtain a remarkable reduction of errors with respect to a non-adaptive setting. The space distribution of the positions chosen for the observations allows to characterize the evolution of instabilities, from deep layers in western boundary current regions, to near-surface layers in the eastward jet area.


Sign in / Sign up

Export Citation Format

Share Document