A Formulation for the Unsteady Aerodynamics of Floating Wind Turbines, With Focus on the Global System Dynamics

Author(s):  
Ilmas Bayati ◽  
Marco Belloli ◽  
Luca Bernini ◽  
Alberto Zasso

This paper proposes a formulation for the assessment of the unsteady aerodynamics of floating offshore wind turbines, based on wind tunnel experiments through surge and pitch imposed motions on the 1/75 DTU 10 MW scale model. Rotor thrust and torque were analysed out of a set of different combinations of amplitudes and frequencies of the imposed mono-harmonic motion, following the idea of splitting these forces into steady and unsteady contributions, respectively through steady and unsteady aerodynamic coefficients. The latter were analysed, for different tip-speed ratios, both experimentally and numerically, with respect to a newly introduced parameter, the “wake reduced velocity”, which turned out to be effective in the description of the unsteady regime. Experimental results have shown good consistency of the formulation and put the basis for further studies on this topic, for the comprehension of this phenomenon and for the development of reduced-order models for control purposes, with the focus of the global system dynamics.

Author(s):  
Alessandro Fontanella ◽  
Ilmas Bayati ◽  
Federico Taruffi ◽  
Francesco La Mura ◽  
Alan Facchinetti ◽  
...  

Abstract This article presents a hardware-in-the-loop (HIL) methodology developed at Politecnico di Milano (PoliMi) to perform wind tunnel tests on floating offshore wind turbines (FOWTs). The 6-DOFs HIL setup is presented, focusing on the main differences with respect to a previous 2-DOFs system. Aerodynamic, rotor and control related loads, physically reproduced by the wind turbine scale model, must be measured in real-time and integrated with the platform numerical model. These forces contribute to couple wind turbine and floating platform dynamics and their correct reproduction is of fundamental importance for the correct simulation of the floating system behavior. The procedure developed to extract rotor loads from the available measurements is presented, discussing its limitations and the possible uncertainties introduced in the results. Results from verification tests in no-wind conditions are presented and analyzed to identify the main uncertainty sources and quantify their effect on the reproduction of the floating wind turbine response to combined wind and waves.


2012 ◽  
Vol 9 (1) ◽  
pp. 67-79 ◽  
Author(s):  
N. Mostafa ◽  
M. Murai ◽  
R. Nishimura ◽  
O. Fujita ◽  
Y. Nihei

Recently, a number of research groups have paid much attention to the study of Floating Offshore Wind Turbines (FOWTs). Similar to other offshore structures, the FOWTs are subjected to irregular waves and wind loads which cause a dynamic response in the structures. Under marine environmental conditions, they face many forces which prevent them from floating in the upright condition; they incline as a result of the winds, strong currents, typhoons, cyclones, storms etc. The motion of the FOWT might be changed by a change in gyroscopic effect which depends on the angular velocity and moment of inertia of the blade. Therefore, to investigate the effect of the gyro moment on the motion of the FOWT, two types of experiment were carried out in a water tank using a 1/360 scale model of a prototype FOWT. Firstly, the interaction between the rotary motion of the wind turbine blade and the dynamic motion of the SPAR-type FOWT was studied at small angles of inclination in regular waves. Secondly, the interaction between the change of rotational speed as well as moment of inertia of the blade and the motion of the FOWT was studied. In this paper, numerical calculations have been carried out using potential theory based on the 3D panel method. Finally, the experimental results are compared with the results of numerical simulation and findings are discussed. DOI: http://dx.doi.org/10.3329/jname.v9i1.10732 Journal of Naval Architecture and Marine Engineering 9(2012) 67-79


Author(s):  
F. Adam ◽  
T. Myland ◽  
F. Dahlhaus ◽  
J. Großmann

The paper will present the preliminary design of the so called GICON® - Tension Leg Platform (TLP) as an innovative foundation concept for floating offshore wind turbines. Preliminary results from model basin tests are also shared. This includes the currently ongoing research of comparing calculated and experimental data obtained through extensive wind and wave tank experiments with a scale model of an offshore wind turbine at the Maritime Research Institute Netherlands (MARIN) in June 2013. These tests have provided insights regarding the dynamic characteristics of the GICON®-TLP by analyzing the system’s response to different load cases. The experiments included wind and wave loads, which represent three different sea states, each with three different directions of inflow. The chosen load cases correspond to the proposed location in the German Baltic Sea where the full scale prototype will be erected.


Author(s):  
Alessandro Fontanella ◽  
Ilmas Bayati ◽  
Marco Belloli

The present work deals with the implementation of a variable-speed variable-pitch control strategy on a wind turbine scale model for hybrid/HIL wind tunnel tests on floating offshore wind turbines. The effects that scaling issues, due to low-Reynolds aerodynamics and rotor structural properties, have in combination with the HIL technique developed by the authors are studied through a dedicated reduced-order linear coupled model. The model is used to tune the original pitch controller gains so to be able to reproduce the system response of the full-scale floating wind turbine during HIL tests.


2017 ◽  
Vol 11 (9) ◽  
pp. 1120-1126 ◽  
Author(s):  
Ilmas Bayati ◽  
Marco Belloli ◽  
Luca Bernini ◽  
Hermes Giberti ◽  
Alberto Zasso

Author(s):  
Matthew J. Fowler ◽  
Richard W. Kimball ◽  
Dale A. Thomas ◽  
Andrew J. Goupee

Model basin testing is a standard practice in the design process for offshore floating structures and has recently been applied to floating offshore wind turbines. 1/50th scale model tests performed by the DeepCwind Consortium at Maritime Research Institute Netherlands (MARIN) in 2011 on various platform types were able to capture the global dynamic behavior of commercial scale model floating wind turbine systems; however, due to the severe mismatch in Reynolds number between full scale and model scale, the strictly Froude-scaled, geometrically similar wind turbine underperformed greatly. This required significant modification of test wind speeds to match key wind turbine aerodynamic loads, such as thrust. To execute more representative floating wind turbine model tests, it is desirable to have a model wind turbine that more closely matches the performance of the full scale design. This work compares the wind tunnel performance, under Reynolds numbers corresponding to model test Froude-scale conditions, of an alternative wind turbine designed to emulate the performance of the National Renewable Energy Laboratory (NREL) 5 MW turbine. Along with the test data, the design methodology for creating this wind turbine is presented including the blade element momentum theory design of the performance-matched turbine using the open-source tools WT_Perf and XFoil. In addition, a strictly Froude-scale NREL 5 MW wind turbine design is also tested to provide a basis of comparison for the improved designs. While the improved, performance-matched turbine was designed to more closely match the NREL 5 MW design in performance under low model test Reynolds numbers, it did not maintain geometric similitude in the blade chord and thickness orientations. Other key Froude scaling parameters, such as blade lengths and rotor operational speed, were maintained for the improved designs. The results of this work support the development of protocols for properly designing scale model wind turbines that emulate the full scale design for Froude-scale wind/wave basin tests of floating offshore wind turbines.


2018 ◽  
Vol 6 (4) ◽  
pp. 118 ◽  
Author(s):  
Frank Lemmer ◽  
Wei Yu ◽  
Po Cheng

Methods for coupled aero-hydro-servo-elastic time-domain simulations of Floating Offshore Wind Turbines (FOWTs) have been successfully developed. One of the present challenges is a realistic approximation of the viscous drag of the wetted members of the floating platform. This paper presents a method for an iterative response calculation with a reduced-order frequency-domain model. It has heave plate drag coefficients, which are parameterized functions of literature data. The reduced-order model does not represent more than the most relevant effects on the FOWT system dynamics. It includes first-order and second-order wave forces, coupled with the wind turbine structural dynamics, aerodynamics and control system dynamics. So far, the viscous drag coefficients are usually defined as constants, independent of the load cases. With the computationally efficient frequency-domain model, it is possible to iterate the drag, such that it fits to the obtained amplitudes of oscillation of the different members. The results show that the drag coefficients vary significantly across operational load conditions. The viscous drag coefficients converge quickly and the method is applicable for concept-level design studies of FOWTs with load case-dependent drag.


2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi

Sign in / Sign up

Export Citation Format

Share Document