Improvement of Wave Loads Estimation From Spatial Pressure Distribution on Ship Hull

Author(s):  
Kurniawan T. Waskito ◽  
Masashi Kashiwagi

Abstract In modern shipbuilding industry, merchant ships tend to increase in size. Accurate prediction of the vertical bending moment in large-maplitude waves has become important for structural design. For establishment of an accurate estimation method, more detailed local hydrodynamic quantities such as the spatial pressure distribution on the whole ship hull surface should be checked. For that purpose, the experiment has been conducted by means of Fiber Bragg Grating (FBG) sensing technology. Using the measured local pressure distribution by only sticking the FBG pressure sensors onto the hull surface, we can evaluate the wave loads; which may lead to establishment of a new evaluation method for the wave loads without using a segmented model. We confirm favorable agreement of the pressure distribution between measurement and computation by Rankine Panel Method (RPM). Furthermore, the vertical bending moment computed at some transverse sections shows favorable agreement between measured and computed results.

2020 ◽  
Vol 101 ◽  
pp. 102261
Author(s):  
Kurniawan T. Waskito ◽  
Masashi Kashiwagi ◽  
Hidetsugu Iwashita ◽  
Munehiko Hinatsu

Author(s):  
S E Heggelund ◽  
T Moan ◽  
S Oma

Methods for calculation of design loads for high-speed vessels are investigated. The influence of operational restrictions on design loads is emphasized. Relevant operational criteria for high-speed displacement vessels are discussed. Procedures and criteria for numerical calculation of operational limits are incomplete and should be further investigated. Operational limits and design loads for a 60 m catamaran are calculated on the basis of linear strip theory. Non-linear effects on design loads are assessed from calculations in regular waves. Simplified formulae commonly used by classification societies for prediction of operational limits seem to over-predict the reduction of motions and wave loads at reduced speed. When operational limits typically given by the shipmaster or the operator are used, the design loads found by direct calculations are comparable with design loads given by classification societies. For vertical bending moment and torsion, the use of active foils is found to increase the linear loads. Owing to reduced motions, the foils reduce the non-linear loads and hence the total loads. The effect of non-linear horizontal loads is not investigated but can be important for transverse bending moment.


Author(s):  
Hui Li ◽  
Jian Zou ◽  
Weijia Sheng ◽  
Xuecong Hu ◽  
Wenjia Hu

Abstract The segmented model test is often used to study the wave load characteristics of large ships as it can account for the hydroealstic effect. The vertical bending moment (VBM) is of crucial importance in ensuring the safety of ocean-going vessels in rough seas, and there exists in the literature a large number of experimental studies of the VBM. For ships with large openings in the deck, for instance, container ships, the lateral wave loads, such as horizontal bending moment (HBM) and torsional moment (TM) in quartering seas, are as important as VBM. There are, however, few studies on the measurement of the coupled horizontal-torsional vibrations of such ships in model tests. In the paper, a method is proposed for designing flexible backbone models that satisfy the similarities of vertical and horizontal bending stiffness as well as the torsional stiffness, and the measurement of the wave load components is also described. In order to meet the similarity of the hull girder stiffness, the backbone cross-section of a complex form is designed. Finite element method (FEM) is used to calculate the natural frequencies and mode shapes of the segmented model. Measurement of the vertical bending moment, horizontal bending moment and torsional moment are calibrated by applying various combinations of loads.


Author(s):  
Ying Tang ◽  
Shili Sun ◽  
Kai Jin ◽  
Zheng Yang ◽  
Huilong Ren

In this paper, rigid ship hull and elastic ship hull were respectively designed. For the former, the hull is divided into two segments, while for the latter, into five segments. And a series of experiments of ship model navigating in regular wave were carried out. Time histories of motion and vertical bending moment of the two models were recorded and analyzed. By comparing results of the two models, the impact of elasticity of hull grider on motion and vertical bending moment can be analyzed.


2005 ◽  
Vol 128 (3) ◽  
pp. 241-247 ◽  
Author(s):  
C. Guedes Soares ◽  
Nuno Fonseca ◽  
Ricardo Pascoal ◽  
Guenther F. Clauss ◽  
Christian E. Schmittner ◽  
...  

The paper presents an analysis of structural design wave loads on an FPSO. The vertical bending moment at midship induced by rogue waves are compared with rule values. The loads induced by deterministic rogue waves were both measured in a seakeeping tank and calculated by an advanced time domain method. Two procedures are used to calculate the expected extreme vertical bending moment during the operational lifetime of the ship. The first one relies on a standard linear long term prediction method, which results from the summation of short term distribution of maxima weighted by their probability of occurrence. The short term stationary seastates are represented by energy spectra and the ship responses by linear transfer functions. The second one is a generalization of the former and it accounts for the nonlinearity of the vertical bending moment, by using nonlinear transfer functions of the bending moment sagging peaks which depend of the wave height.


Author(s):  
Kazuhiro Iijima ◽  
Masahiko Fujikubo

In this paper, post-ultimate strength behavior of VLFS to extreme wave-induced loads is investigated. A mathematical model to describe the post-ultimate strength behavior of VLFS is developed taking the hydroelasticity into account. The whole VLFS is modeled by two beams on an elastic foundation connected via a nonliner rotational spring assuming that VLFS collapses amidship under severe bending moment. The model is solved numerically by using FEM. It is shown that the extent of collapse of VLFS is smaller than that of ship structures for given amplitude of vertical bending moment on condition that the structures have the same cross section and the same moment-displacement relationship. A simple formula to represent the extent of collapse of VLFS is derived. Its efficacy is shown.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2157
Author(s):  
Kevin Langlois ◽  
Ellen Roels ◽  
Gabriël Van De Velde ◽  
Cláudia Espadinha ◽  
Christopher Van Vlerken ◽  
...  

Sensing pressure at the physical interface between the robot and the human has important implications for wearable robots. On the one hand, monitoring pressure distribution can give valuable benefits on the aspects of comfortability and safety of such devices. Additionally, on the other hand, they can be used as a rich sensory input to high level interaction controllers. However, a problem is that the commercial availability of this technology is mostly limited to either low-cost solutions with poor performance or expensive options, limiting the possibilities for iterative designs. As an alternative, in this manuscript we present a three-dimensional (3D) printed flexible capacitive pressure sensor that allows seamless integration for wearable robotic applications. The sensors are manufactured using additive manufacturing techniques, which provides benefits in terms of versatility of design and implementation. In this study, a characterization of the 3D printed sensors in a test-bench is presented after which the sensors are integrated in an upper arm interface. A human-in-the-loop calibration of the sensors is then shown, allowing to estimate the external force and pressure distribution that is acting on the upper arm of seven human subjects while performing a dynamic task. The validation of the method is achieved by means of a collaborative robot for precise force interaction measurements. The results indicate that the proposed sensors are a potential solution for further implementation in human–robot interfaces.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110277
Author(s):  
Yankai Hou ◽  
Zhaosheng Zhang ◽  
Peng Liu ◽  
Chunbao Song ◽  
Zhenpo Wang

Accurate estimation of the degree of battery aging is essential to ensure safe operation of electric vehicles. In this paper, using real-world vehicles and their operational data, a battery aging estimation method is proposed based on a dual-polarization equivalent circuit (DPEC) model and multiple data-driven models. The DPEC model and the forgetting factor recursive least-squares method are used to determine the battery system’s ohmic internal resistance, with outliers being filtered using boxplots. Furthermore, eight common data-driven models are used to describe the relationship between battery degradation and the factors influencing this degradation, and these models are analyzed and compared in terms of both estimation accuracy and computational requirements. The results show that the gradient descent tree regression, XGBoost regression, and light GBM regression models are more accurate than the other methods, with root mean square errors of less than 6.9 mΩ. The AdaBoost and random forest regression models are regarded as alternative groups because of their relative instability. The linear regression, support vector machine regression, and k-nearest neighbor regression models are not recommended because of poor accuracy or excessively high computational requirements. This work can serve as a reference for subsequent battery degradation studies based on real-time operational data.


Author(s):  
Christian Raab ◽  
Kai Rohde-Brandenburger

AbstractThe determination of structural loads plays an important role in the certification process of new aircraft. Strain gauges are usually used to measure and monitor the structural loads encountered during the flight test program. However, a time-consuming wiring and calibration process is required to determine the forces and moments from the measured strains. Sensors based on MEMS provide an alternative way to determine loads from the measured aerodynamic pressure distribution around the structural component. Flight tests were performed with a research glider aircraft to investigate the flight loads determined with the strain based and the pressure based measurement technology. A wing glove equipped with 64 MEMS pressure sensors was developed for measuring the pressure distribution around a selected wing section. The wing shear force determined with both load determination methods were compared to each other. Several flight maneuvers with varying loads were performed during the flight test program. This paper concentrates on the evaluation of dynamic flight maneuvers including Stalls and Pull-Up Push-Over maneuvers. The effects of changes in the aerodynamic flow characteristics during the maneuver could be detected directly with the pressure sensors based on MEMS. Time histories of the measured pressure distributions and the wing shear forces are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document