Efficiency of Carbon Fibre Buckle Arrestors for Subsea Pipelines

Author(s):  
Hassan Karampour ◽  
Mahmoud Alrsai ◽  
Wayne Hall

Abstract This paper experimentally investigates the feasibility and efficiency of using Carbon Fiber Reinforced Polymer (CFRP) buckle arrestors in controlling the buckle propagation failure of subsea pipelines. Hyperbaric chamber tests are conducted on 1.6m Steel pipe with D/t = 28 and using CFRP buckle arrestors with different thickness, fiber orientation and spacing. Using an external pressure gauge and a high-pressure camera inserted inside the hyperbaric chamber, the pressure magnitude, rate and shape of collapse and its propagation in the vicinity of the arrestors are measured. The dynamics of buckle propagation and efficiency of different arrestor configurations are reported. It is observed that in the vicinity of the CFRP arrestors wrapped in the hoop direction, the well-known dog-bone buckle shape changes into a U-shape and the pressure level upsurges significantly. The optimum results were obtained with CFRP as thick as the pipeline wall-thickness and wrapped in the hoop direction of the pipeline. The results show that at similar arrestor efficiency, the CFRP arrestors can be much thinner than the existing steel slip-on arrestors. Also, the spacing between the CFRP arrestor can be larger than that of the steel slip-on arrestor.

Author(s):  
Jason Sun ◽  
Paul Jukes

Development of deep water oil reservoirs are undertaken in the Gulf of Mexico (GoM) where the flowlines are installed in the water depths in excess of 3,050m (10,000ft). Deepwater external pressure becomes so significant that it makes local buckling or accidental collapse propagate along the pipeline. Such propagation will not stop until it reaches a region where the external pressure falls below the propagating pressure or where the pipe wall is strengthened. Field data indicates that once a buckle happens, the flowline could collapse many kilometers instantly. It concludes that buckle propagation could cause substantial economical impact if left uncontrolled. For pipe-in-pipe (PIP) flowline, due to lack of pressure differential, the outer pipe becomes a fragile component in terms of buckle propagation. One way to prevent the propagation of local buckling or collapse is to utilize the buckle arrestors of various types. Clamp-on buckle arrestor is so far the best choice for the flowlines to be installed by the Reel-Lay method. The objective of this paper is to present the results of a finite element (FE) study, to reveal the phenomena of collapsing/propagating of the pipe-in-pipe flowline, and to investigate the effectiveness of Clamp-on buckle arrestor for deep water flowlines. Sensitivities of key design parameters are explored with the purpose of guiding detail mechanical design of the clamp-on buckle arrestor.


Author(s):  
Enrico Torselletti ◽  
Roberto Bruschi ◽  
Furio Marchesani ◽  
Luigino Vitali

Buckle propagation under external pressure is a potential hazard during offshore pipeline laying in deep waters. It is normal design practice to install thicker pipe sections which, in case of buckle initiation and consequent propagation, can stop it so avoiding the lost of long pipe sections as well as threats to the installation equipment and dedicated personnel. There is still a series of questions the designer needs to answer when a new trunkline for very deep water applications is conceived: • What are the implications of the actual production technology (U-ing, O-ing and Expansion or Compression e.g. UO, UOE and UOC) on the propagation and arrest capacity of the line pipe, • How formulations for buckle arrestors design can be linked to a safety objective as required in modern submarine pipeline applications. The answers influence any decision on thickness, length, material and spacing of buckle arrestors. This paper gives an overview of buckle propagation and arrest phenomena and proposes a new design equation, applicable for both short and long buckle arrestors, based on available literature information and independent numerical analyses. Partial safety factors are recommended, based on a calibration process performed using structural reliability methods. Calibration aimed at fulfilling the safety objectives defined in DNV Offshore Standards OS-F101 and OS-F201.


Author(s):  
Thomas Plonski ◽  
Gundula Stadie-Frohbo¨s ◽  
Gordon Jokisch

Buckle propagation is a relevant design criterion for deep-water offshore pipelines. Imposed by external impact or local bending, e.g. during laying, a local buckle can be initiated, thereby decreasing the collapse strength of the pipeline. As a result of the high ambient external pressure, the buckle can start to propagate. Several design criteria for buckle propagation exist. This paper compares different design criteria with numerical results to obtain an impression of the levels of conservatism applied in the various codes. In most design cases, it is not suitable to avoid buckle propagation by using an increased wall thickness over the entire pipeline. Therefore, buckle arrestors are installed to stop the propagation. The common technical solution is to install sections of thicker pipeline, which requires that the buckle arrestor wall thickness and the length of the buckle arrestor have to be determined during design. A distinction is drawn between short and long buckle arrestors. Both cases are considered here. The design of the buckle arrestor can be carried out by using well-known criteria, such as the criteria developed by Kyriakides, Langner or Torselletti et al. These criteria are compared with experimental data. Numerical calculations are carried out and the results are compared with the design criteria.


2013 ◽  
Vol 71 ◽  
pp. 1-6 ◽  
Author(s):  
Hossein Khalilpasha ◽  
Faris Albermani

2020 ◽  
Vol 23 (7) ◽  
pp. 1487-1504 ◽  
Author(s):  
Bing Zhang ◽  
Jun-Liang Zhao ◽  
Tao Huang ◽  
Ning-Yuan Zhang ◽  
Yi-Jie Zhang ◽  
...  

Hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns are a novel form of hollow columns that combine two traditional construction materials (i.e. concrete and steel) with fiber-reinforced polymer composites. Hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns consist of an inner tube made of steel, an outer tube made of fiber-reinforced polymer, and a concrete layer between the two tubes. Existing studies, however, are focused on hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with fibers of the fiber-reinforced polymer tube oriented in the hoop direction or close to the hoop direction. In order to investigate the effect of fiber angles (i.e. the fiber angle between the fiber orientation and the longitudinal axis of the fiber-reinforced polymer tube), monotonic axial compression tests were conducted on hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with an fiber-reinforced polymer tube of ±45°, ±60°, or ±80° fiber angles. There were two types of steel tubes adopted for these hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns. The fiber-reinforced polymer tube thickness was also investigated as an important parameter. Experimental results showed that the confinement effect of the fiber-reinforced polymer tube increased with the increase of the absolute value of fiber angles, whereas the ultimate axial strain of hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns decreased with the increase of the absolute value of fiber angles. An existing stress–strain model, which was developed on the basis of hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with an fiber-reinforced polymer tube of ±90° fiber angles, is verified using the test results of this study. For the compressive strength of the confined concrete in hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns, the existing model provides conservative predictions for specimens with a ±80° fiber-reinforced polymer tube, overestimated predictions for specimens with a ±60° fiber-reinforced polymer tube, and close predictions for specimens with a ±45° fiber-reinforced polymer tube.


Author(s):  
Z. Omrani ◽  
K. Abedi ◽  
A. R. Mostafa Gharabaghi

In this paper, a numerical study of the dynamic buckle propagation, initiated in long pipes under external pressure, is presented. For a long pipe, due to the high exerted pressure, local instability is likely to occur; therefore, the prevention of its occurrence and propagation are very important subjects in the design of pipelines. The 3D finite element modeling of the buckle propagation is presented by considering the inertia of the pipeline and the nonlinearity introduced by the contact between its collapsing walls. The buckling and collapse are assumed to take place in the vacuum. The numerical results of the nonlinear finite element analysis are compared with the experimental results obtained by Kyriakides and Netto (2000, “On the Dynamics of Propagating Buckle in Pipelines,” Int. J. Solids Struct., 37, pp. 6843–6878) from a study on the small-scale models. Comparison shows that the finite element results have very close agreement with those of the experimental study. Therefore, it is concluded that the finite element model is reliable enough to be used for nonlinear collapse analysis of the dynamic buckle propagation in the pipelines. In this study, the effects of external pressure on the velocity of dynamic buckle propagation for different diameter to thickness ratios are investigated. In addition, the mathematical relations, based on the initiation pressure, are derived for the velocity of buckle propagation considering the diameter to thickness ratio of the pipeline. Finally, a relation for the buckle velocity as a function of the pressure and diameter to thickness ratio is presented.


Author(s):  
Mingqiao Tang ◽  
Jianghong Xue ◽  
Renhuai Liu

This paper presents a unique approach to analyze the steady-state buckle propagation phenomenon in underwater pipelines. In previous work, we restudied the buckling of a very long pipeline subjected to external pressure and found that buckling happens only over a certain length of the pipeline. In this paper, the collapse mode of the pipeline obtained in previous studies is taken as the transition zone during steady-state buckle propagation. Kinematics in the transition zone is analyzed based on von Kármán–Donnell type of nonlinearity. Assuming linear elastic rigid plastic material properties, the mechanical responses in the transition zone are examined using the deformation theory. Two parameters, the yield coefficient and the membrane stretching factor, are introduced to depict the effects of transversal bending and the membrane stretching, respectively. Analytical solution of buckle propagation pressure is derived by considering the energy conversation calculated from shell theory. It is found that the buckle propagation performance is governed by the transversal bending, including the circumferential bending and longitudinal bending. The membrane stretching is significant only for thick wall pipeline, in particular when the ratio of radius-to thickness is small than ten. The analysis is in effect by comparing the obtained solutions with the well-established predictions and the experimental results.


Author(s):  
Chen An ◽  
Menglan Duan ◽  
Segen F. Estefen

Sandwich pipes (SP) can be an effective solution for ultra-deepwater submarine pipelines, combining high structural resistance with thermal insulation. Most research work on this subject has been conducted at the subsea technology laboratory (LTS) of COPPE/UFRJ, with the aim of developing qualified pipes to transport deepwater oil and gas, especially for the pre-salt reservoirs at Offshore Brazil. This article reviewed most of the research done in recent years (2002–2012) on the buckling, collapse and buckle propagation of SP, which emphasized on the development of theoretical, experimental and numerical methods adopted to analyze such structural behavior of SP with different core materials. The main mechanical and thermal properties of the previously considered core materials were also given, together with the elastoplastic constitutive model for each material. The experimental and numerical results of collapse and buckle propagation under external pressure for SP were summarized. A general discussion of the mechanical failure modes of SP under external pressure was also provided. Besides, some suggestions for future work on collapse behavior and buckle propagation of SP were given.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1134-1143 ◽  
Author(s):  
Sun Ting Yan ◽  
Yin Fa Zhu ◽  
Zhi Jiang Jin ◽  
Hao Ye

Quasi-static finite element simulation is carried out on buckle propagation phenomenon of offshore pipelines under external pressure. Arc-length method and volume-controlled static analysis by employing hydrostatic fluid element F3D4 are employed to calculate the steady buckle propagation pressure. After verifying the validity of numerical model, emphasis is on the influence of tension on propagation pressure considering isotropic hardening elastoplastic and elastic-perfectly plastic materials. Parametric study is conducted to include the effect of diameter-thickness ratio, after which two empirical equations are derived by curve fitting procedure. Finally, some comments on the results obtained through rigid-plastic hinge model are presented and a modified plastic hinge model including effect of material anisotropy is derived. The results can serve as a reference for more reasonable design of buckle arrestors.


2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Abdul Khair Junaidi ◽  
Jaswar Koto

Recent developments in offshore pipeline projects in Malaysia waters are showing general trend towards deeper water, such as KIKEH in 2200 meter water depth. As the exploration is getting into deeper water or crossing a deep water section, different design issues may become governing compared to shallow water. Conceptual Design for Deep Water Pipeline discusses number of issues that need to be taken onto account in the design of pipelines in deep water. Aspect related to high external pressure, limitation for installation and geo-hazards are addressed. In order to give an early insight for designer to measure the reliability for a deep water project to current technology capabilities, a simulation program required to achieve the objective. This paper discusses several factors for selection of subsea pipelines such as wall thickness, buckling arrestors design, installation configuration and free spanning.


Sign in / Sign up

Export Citation Format

Share Document