Data Driven Prediction of the Minimum Miscibility Pressure (MMP) Between Mixtures of Oil and Gas Using Deep Learning

2021 ◽  
Author(s):  
Quynh C. Pham ◽  
Trung Q. Trinh ◽  
Lesley A. James

Abstract Knowing the minimum miscibility pressure (MMP) between different oil and gas compositions is important to predict reservoir performance for gas-based injection as a secondary gas flood or tertiary technique such as water alternating gas (WAG). Machine Learning (ML) has been used widely and has been proven efficient in estimating these properties. In this work, the development of ML as well as commonly used algorithms in predicting bubble point pressure and oil formation volume factor is reviewed. Just a few studies are found before 2000. From 2001 to 2010, the use of ML increased steadily. However, a sharp augmentation in number of articles is observed from 2011 up to now. More than that, Artificial Neural Networks (ANN) is the most employed algorithm with 23 applications out of 38 studied papers. In addition, for the first time, deep learning- multiple fully connected networks algorithm is implemented to predict the MMP for oil and gas through 250 datasets covering a wide range of CO2 concentration from 0 to 100% in the injected gas. The wide range of CO2 concentrations is to cover all modes of gas injection from a pure CO2 flood to CO2 being negligibly present when injecting a sweet gas. The model is then optimized using Early Stopping and K-Fold Cross Validation techniques, showing the average result of k splitting data sets. The eight input parameters are as follows: reservoir temperature, oil characteristics (molecular weight, ratio of volatile components, and intermediate components), and gas characteristics (mole percentage of CO2, Cl, N2, H2S, C2+). The proposed model is compared with other Machine Learning Techniques such as Decision Tree and Random Forest Regression. The results show that reservoir temperature, the amount of CO2 and Cl in the gas source were the parameters to affect MMP the most significantly. The presence of CO2 in the gas stream will lower the MMP significantly. The Deep Learning model obtained an R2 = 0.96 and a Root Mean Square Error (RMSE) of 5.4%. Through Early Stopping technique, the proposed model reach the R2 result of 0.97 in 7 epochs. An R2 value of 0.954 was found using K-Fold Cross Validation technique, resulting in a good model generated by five folds data set. The model built by Deep Learning algorithm was more accurate than these ones built by Decision Tree and Random Forest Regression, which had an R2 value below 0.9 and RMSE larger than 10%. This work goes beyond other prior research by adding a ‘stopping point’ concept, increasing the overall performance of the methods for general applications, and considering the full range of CO2 in the gas stream.

2021 ◽  
Vol 17 (2) ◽  
pp. e1008767
Author(s):  
Zutan Li ◽  
Hangjin Jiang ◽  
Lingpeng Kong ◽  
Yuanyuan Chen ◽  
Kun Lang ◽  
...  

N6-methyladenine (6mA) is an important DNA modification form associated with a wide range of biological processes. Identifying accurately 6mA sites on a genomic scale is crucial for under-standing of 6mA’s biological functions. However, the existing experimental techniques for detecting 6mA sites are cost-ineffective, which implies the great need of developing new computational methods for this problem. In this paper, we developed, without requiring any prior knowledge of 6mA and manually crafted sequence features, a deep learning framework named Deep6mA to identify DNA 6mA sites, and its performance is superior to other DNA 6mA prediction tools. Specifically, the 5-fold cross-validation on a benchmark dataset of rice gives the sensitivity and specificity of Deep6mA as 92.96% and 95.06%, respectively, and the overall prediction accuracy is 94%. Importantly, we find that the sequences with 6mA sites share similar patterns across different species. The model trained with rice data predicts well the 6mA sites of other three species: Arabidopsis thaliana, Fragaria vesca and Rosa chinensis with a prediction accuracy over 90%. In addition, we find that (1) 6mA tends to occur at GAGG motifs, which means the sequence near the 6mA site may be conservative; (2) 6mA is enriched in the TATA box of the promoter, which may be the main source of its regulating downstream gene expression.


2019 ◽  
Author(s):  
Zutan Li ◽  
Hangjin Jiang ◽  
Lingpeng Kong ◽  
Yuanyuan Chen ◽  
Liangyun Zhang ◽  
...  

ABSTRACTN6-methyladenin(6mA) is an important DNA modification form associated with a wide range of biological processes. Identifying accurately 6mA sites on a genomic scale is crucial for understanding of 6mA’s biological functions. In this paper, we developed, without requiring any prior knowledge of 6mA and manually crafted sequence features, a deep learning framework named Deep6mA to identify DNA 6mA sites, and its performance is superior to other DNA 6mA prediction tools. Specifically, the 5-fold cross-validation on a benchmark dataset of rice gives the sensitivity and specificity of Deep6mA as 92.96% and 95.06%, respectively, and the overall prediction accuracy is 94%. Importantly, we find that the sequences with 6mA sites share similar patterns across different species. The model trained with rice data predicts well the 6mA sites of other three species: Arabidopsis thaliana, Fragaria vesca, and Rosa chinensis, with a prediction accuracy over 90%. In addition, we find that (1) 6mA tends to occur at GAGG motifs, which means the sequence near the 6mA site may be conservative; (2) 6mA is enriched in the TATA box of the promoter, which may be the main source of its regulating downstream gene expression.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mingzhu Tang ◽  
Xiangwan Fu ◽  
Huawei Wu ◽  
Qi Huang ◽  
Qi Zhao

Traffic flow anomaly detection is helpful to improve the efficiency and reliability of detecting fault behavior and the overall effectiveness of the traffic operation. The data detected by the traffic flow sensor contains a lot of noise due to equipment failure, environmental interference, and other factors. In the case of large traffic flow data noises, a traffic flow anomaly detection method based on robust ridge regression with particle swarm optimization (PSO) algorithm is proposed. Feature sets containing historical characteristics with a strong linear correlation and statistical characteristics using the optimal sliding window are constructed. Then by providing the feature sets inputs to the PSO-Huber-Ridge model and the model outputs the traffic flow. The Huber loss function is recommended to reduce noise interference in the traffic flow. The L2 regular term of the ridge regression is employed to reduce the degree of overfitting of the model training. A fitness function is constructed, which can balance the relative size between the k-fold cross-validation root mean square error and the k-fold cross-validation average absolute error with the control parameter η to improve the optimization efficiency of the optimization algorithm and the generalization ability of the proposed model. The hyperparameters of the robust ridge regression forecast model are optimized by the PSO algorithm to obtain the optimal hyperparameters. The traffic flow data set is used to train and validate the proposed model. Compared with other optimization methods, the proposed model has the lowest RMSE, MAE, and MAPE. Finally, the traffic flow that forecasted by the proposed model is used to perform anomaly detection. The abnormality of the error between the forecasted value and the actual value is detected by the abnormal traffic flow threshold based on the sliding window. The experimental results verify the validity of the proposed anomaly detection model.


2020 ◽  
Vol 12 (18) ◽  
pp. 2985 ◽  
Author(s):  
Yeneng Lin ◽  
Dongyun Xu ◽  
Nan Wang ◽  
Zhou Shi ◽  
Qiuxiao Chen

Automatic road extraction from very-high-resolution remote sensing images has become a popular topic in a wide range of fields. Convolutional neural networks are often used for this purpose. However, many network models do not achieve satisfactory extraction results because of the elongated nature and varying sizes of roads in images. To improve the accuracy of road extraction, this paper proposes a deep learning model based on the structure of Deeplab v3. It incorporates squeeze-and-excitation (SE) module to apply weights to different feature channels, and performs multi-scale upsampling to preserve and fuse shallow and deep information. To solve the problems associated with unbalanced road samples in images, different loss functions and backbone network modules are tested in the model’s training process. Compared with cross entropy, dice loss can improve the performance of the model during training and prediction. The SE module is superior to ResNext and ResNet in improving the integrity of the extracted roads. Experimental results obtained using the Massachusetts Roads Dataset show that the proposed model (Nested SE-Deeplab) improves F1-Score by 2.4% and Intersection over Union by 2.0% compared with FC-DenseNet. The proposed model also achieves better segmentation accuracy in road extraction compared with other mainstream deep-learning models including Deeplab v3, SegNet, and UNet.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1875
Author(s):  
Yuchi Tian ◽  
Temitope Emmanuel Komolafe ◽  
Jian Zheng ◽  
Guofeng Zhou ◽  
Tao Chen ◽  
...  

To assess if quantitative integrated deep learning and radiomics features can predict the PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a single center. These patients were divided into a high PD-L1 expression group (30 patients) and a low PD-L1 expression group (73 patients). Both radiomics and deep learning features were extracted from their MRI sequence of T2-WI, which were merged into an integrative feature space for machine learning for the prediction of PD-L1 expression. The five-fold cross-validation was adopted to validate the performance of the model, while the AUC was used to assess the predictive ability of the model. Based on the five-fold cross-validation, the integrated model achieved the best prediction performance, with an AUC score of 0.897 ± 0.084, followed by the deep learning-based model with an AUC of 0.852 ± 0.043 then the radiomics-based model with AUC of 0.794 ± 0.035. The feature set integrating radiomics and deep learning features is more effective in predicting PD-L1 expression level than only one feature type. The integrated model can achieve fast and accurate prediction of PD-L1 expression status in preoperative MRI of HCC patients.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A236-A236
Author(s):  
A Guillot ◽  
T Moutakanni ◽  
M Harris ◽  
P J Arnal ◽  
V Thorey

Abstract Introduction Polysomnography (PSG) is the gold-standard to diagnose obstructive sleep apnea (OSA). OSA severity diagnosis is defined by the apnea-hypopnea index (AHI) defined as the number of apnea and hypopnea events measured per hour of sleep. The Dreem2 headband (DH) is a self-administered, easy to use device that measure EEG, breathing frequency, heart rate and sound at-home. In our study, we assessed the performance of the DH to automatically detects OSA compared to 3 sleep’s experts scoring on PSG. Methods 41 subjects (8 females, 42.6 ± 13.7 y.o.) having a suspicion of OSA performed a night at-home wearing both a PSG and the DH. Each PSG record was scored for apnea and hypopnea events by 3 independent trained sleep experts following AASM guidelines. The deep learning approach DOSED, was trained on the DH signals using the manual apnea scoring. 10-fold cross-validation was used to provide predictions for each of the 41 subjects with the DH. Results We observed an average AHI expert’s scoring of 13.6 ± 10.1 CI[10.5, 16.5] compared to 12.9 ± 10.3 CI[9.6, 15.8] for the DH. Both, the correlation between the 3 scorers (r= 0.88, p < 0.001) and the DH and the scorers (r=0.79, p< 0.001) were significant. The specificity and sensitivity to detect mild OSA (AHI ≤ 5) was 84.4 % and 96.4 % for the DH and 86.5 % and 86.0% for the scorers. Conclusion The results show that the DH using deep learning can detect OSA with an accuracy similar to the sleep experts. The use of DH paves the way for longitudinal monitoring of patients with a suspicion of OSA and its accessibility could lead to better screening of the general population. Support This Study has been supported by Dreem sas.


Author(s):  
Laboni Sarker ◽  
Md. Mohaiminul Islam ◽  
Tanveer Hannan ◽  
Zakaria Ahmed

Coronavirus disease (COVID-19) is a pandemic infectious disease that has a severe risk of spreading rapidly. The quick identification and isolation of the affected persons is the very first step to fight against this virus. In this regard, chest radiology images have been proven to be an effective screening approach of COVID-19 affected patients. A number of AI based solutions have been developed to make the screening of radiological images faster and more accurate in detecting COVID-19. In this study, we are proposing a deep learning based approach using Densenet-121 to effectively detect COVID-19 patients. We incorporated transfer learning technique to leverage the information regarding radiology image learned by another model (CheXNet) which was trained on a huge Radiology dataset of 112,120 images. We trained and tested our model on COVIDx dataset containing 13,800 chest radiography images across 13,725 patients. To check the robustness of our model, we performed both two-class and three-class classifications and achieved 96.49% and 93.71% accuracy respectively. To further validate the consistency of our performance, we performed patient-wise k-fold cross-validation and achieved an average accuracy of 92.91% for three class task. Moreover, we performed an interpretability analysis using Grad-CAM to highlight the most important image regions in making a prediction. Besides ensuring trustworthiness, this explainability can also provide new insights about the critical factors regarding COVID-19. Finally, we developed a website that takes chest radiology images as input and generates probabilities of the presence of COVID-19 or pneumonia and a heatmap highlighting the probable infected regions. Code and models' weights are availabe.


Author(s):  
Zhihao Ke ◽  
Xiaoning Liu ◽  
Yining Chen ◽  
Hongfu Shi ◽  
Zigang Deng

Abstract By the merits of self-stability and low energy consumption, high temperature superconducting (HTS) maglev has the potential to become a novel type of transportation mode. As a key index to guarantee the lateral self-stability of HTS maglev, guiding force has strong non-linearity and is determined by multitudinous factors, and these complexities impede its further researches. Compared to traditional finite element and polynomial fitting method, the prosperity of deep learning algorithms could provide another guiding force prediction approach, but the verification of this approach is still blank. Therefore, this paper establishes 5 different neural network models (RBF, DNN, CNN, RNN, LSTM) to predict HTS maglev guiding force, and compares their prediction efficiency based on 3720 pieces of collected data. Meanwhile, two adaptively iterative algorithms for parameters matrix and learning rate adjustment are proposed, which could effectively reduce computing time and unnecessary iterations. And according to the results, it is revealed that, the DNN model shows the best fitting goodness, while the LSTM model displays the smoothest fitting curve on guiding force prediction. Based on this discovery, the effects of learning rate and iterations on prediction accuracy of the constructed DNN model are studied. And the learning rate and iterations at the highest guiding force prediction accuracy are 0.00025 and 90000, respectively. Moreover, the K-fold cross validation method is also applied to this DNN model, whose result manifests the generalization and robustness of this DNN model. The imperative of K-fold cross validation method to ensure universality of guiding force prediction model is likewise assessed. This paper firstly combines HTS maglev guiding force prediction with deep learning algorithms considering different field cooling height, real-time magnetic flux density, liquid nitrogen temperature and motion direction of bulk. Additionally, this paper gives a convenient and efficient method for HTS guiding force prediction and parameter optimization.


2018 ◽  
Vol 7 (2.27) ◽  
pp. 93
Author(s):  
Pooja Thakur ◽  
Mandeep Singh ◽  
Harpreet Singh ◽  
Prashant Singh Rana

H1B work visas are utilized to contract profoundly talented outside specialists at low wages in America which help firms and impact U.S economy unfavorably. In excess of 100,000 individuals for every year apply tight clamp for higher examinations and also to work and number builds each year. Selections of foreigners are done by lottery system which doesn’t follow any full proofed method and so results cause a loophole between US-based and foreign workers. We endeavor to examine petitions filled from 2015 to 2017 with the goal that a superior prediction model need to develop using machine learning which helps to foresee the aftereffect of the request of ahead of time which shows whether an appeal to is commendable or not. In this work, we use seven classification models Decision tree, C5.0, Random Forest, Naïve Bayes, Neural Network and SVM which predict the status of a petition as certified, denied, withdrawal or certified with-drawls. The predictions of these models are checked on accuracy parameter. It is found that C5.0 outperform with the best accuracy of 94.62 as a single model but proposed model gives better results of 95.4 accuracies which is built by machine ensemble method and this is validated by 10 fold cross-validation. 


2000 ◽  
Vol 10 (01) ◽  
pp. 9-18 ◽  
Author(s):  
PETER J. EDWARDS ◽  
ALAN F. MURRAY

This paper addresses the issues of neural network model development and maintenance in the context of a complex task taken from the papermaking industry. In particular, it describes a comparison study of early stopping techniques and model selection, both to optimise neural network models for generalisation performance. The results presented here show that early stopping via use of a Bayesian model evidence measure is a viable way of optimising performance while also making maximum use of all the data. In addition, they show that ten-fold cross-validation performs well as a model selector and as an estimator of prediction accuracy. These results are important in that they show how neural network models may be optimally trained and selected for highly complex industrial tasks where the data are noisy and limited in number.


Sign in / Sign up

Export Citation Format

Share Document