Micro-CHP (Cooling, Heating, and Power): Not Just Scaled Down CHP

Author(s):  
Louay M. Chamra ◽  
Pedro J. Mago ◽  
Nick Stone ◽  
Jason Oliver

The paper will introduce the research community to the Mississippi Micro-CHP (Cooling, Heating, and Power) and Bio-fuel Center, a unique research, demonstration and education center combining the resources and expertise from Mississippi State University Engineering, Agriculture, and the Mississippi Agricultural and Forestry Experiment Station (MAFES). The center is a vertically integrated program to study and demonstrate the entire bio-fuel utilization cycle from “woodchips to micro-CHPs”: feedstock production, conversion to bio-fuel/biogas, conversion to onsite electrical power, and utilization of the resulting waste heat to provide the site’s cooling and heating needs. The “micro” designates a focus on residential, small commercial and rural applications. The coupling of micro-CHP with bio-fuels has to do with addressing regional and demographic consideration of successful micro-CHP implementation as opposed to a one-strategy-fits-all approach. The paper will contrast characteristics of residential and small commercial establishments versus commercial/industrial CHP systems and form a list of desirable characteristics for micro-CHP components and overall micro-CHP system design. Based on these evaluations, future research plans for the Center will be suggested. Another factor that will be stressed is that Micro-CHP will best be utilized if designed as part of a whole building system. The characteristics of the building are as important as the characteristics of the equipment, and both should be designed to work together synergistically.

Author(s):  
Michael K. Sahm ◽  
Jifeng Zhang ◽  
Timothy Wagner ◽  
Sunghan Jung

System level integration of an electrical power generating prime mover with a waste heat recovery thermally activated cooling technology is analyzed. Component and system level metrics for quantifying efficiency, performance and value are defined. Trades between component level metrics and system level metrics are performed and optimal integrated cooling, heating and power configuration characteristics and value sensitivity to integration parameters are quantified. Methods developed are extensible to other integrated prime mover and thermally activated technology system approaches.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
R. Dan Seale ◽  
Rubin Shmulsky ◽  
Frederico Jose Nistal Franca

This review primarily describes nondestructive evaluation (NDE) work at Mississippi State University during the 2005–2020 time interval. Overall, NDE is becoming increasingly important as a means of maximizing and optimizing the value (economic, engineering, utilitarian, etc.) of every tree that comes from the forest. For the most part, it focuses on southern pine structural lumber, but other species such as red pine, spruce, Douglas fir, red oak, and white oak and other products such as engineered composites, mass timber, non-structural lumber, and others are included where appropriate. Much of the work has been completed in conjunction with the U.S. Department of Agriculture, Forest Service, Forest Products Laboratory as well as the Agricultural Research Service with the overall intent of improving lumber and wood products standards and valuation. To increase the future impacts and adoption of this NDE-related work, wherever possible graduate students have contributed to the research. As such, a stream of trained professionals is a secondary output of these works though it is not specifically detailed herein.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Pim Bongaerts ◽  
Gonzalo Perez-Rosales ◽  
Veronica Z Radice ◽  
Gal Eyal ◽  
Andrea Gori ◽  
...  

Abstract Mesophotic coral ecosystems (MCEs) and temperate mesophotic ecosystems (TMEs) occur at depths of roughly 30–150 m depth and are characterized by the presence of photosynthetic organisms despite reduced light availability. Exploration of these ecosystems dates back several decades, but our knowledge remained extremely limited until about a decade ago, when a renewed interest resulted in the establishment of a rapidly growing research community. Here, we present the ‘mesophotic.org’ database, a comprehensive and curated repository of scientific literature on mesophotic ecosystems. Through both manually curated and automatically extracted metadata, the repository facilitates rapid retrieval of available information about particular topics (e.g. taxa or geographic regions), exploration of spatial/temporal trends in research and identification of knowledge gaps. The repository can be queried to comprehensively obtain available data to address large-scale questions and guide future research directions. Overall, the ‘mesophotic.org’ repository provides an independent and open-source platform for the ever-growing research community working on MCEs and TMEs to collate and expedite our understanding of the occurrence, composition and functioning of these ecosystems. Database URL: http://mesophotic.org/


2015 ◽  
Vol 787 ◽  
pp. 782-786 ◽  
Author(s):  
R. Prakash ◽  
D. Christopher ◽  
K. Kumarrathinam

The prime objective of this paper is to present the details of a thermoelectric waste heat energy recovery system for automobiles, more specifically, the surface heat available in the silencer. The key is to directly convert the surface heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Also the other face of the TEG will remain cold. Hence the skin burn out accidents can be avoided. The experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.


Author(s):  
Richard L. Hack ◽  
Max R. Venaas ◽  
Vince G. McDonell ◽  
Tod M. Kaneko

Small scale Distributed Generation with waste heat recovery (<50 kW power output, micro-DG/CHP) is an expanding market supporting the widespread deployment of on-site generation to much larger numbers of facilities. The benefits of increased overall thermal efficiency, reduced pollutant emissions, and grid/microgrid support provided by DG/CHP can be maximized with greater quantities of smaller systems that better match the electric and thermal on-site loads. The 3-year CEC funded program to develop a natural gas fueled automotive based rotary engine for micro-DG/CHP, capitalizing upon the unique attributes engine configuration will be presented including initial performance results and plans for the balance of the program.


1986 ◽  
Vol 63 (3) ◽  
pp. 235
Author(s):  
Eugene Grimley ◽  
Leon L. Combs ◽  
Charles U. Pittman

Synthesis ◽  
2018 ◽  
Vol 50 (19) ◽  
pp. 3833-3842 ◽  
Author(s):  
Vladimir Dimitrov ◽  
Simon Woodward

Electrically conducting organic salts, known for over 60 years, have recently demonstrated new abilities to convert waste heat directly into electrical power via the thermoelectric effect. Multiple opportunities are emerging for new structure–property relationships and for new materials to be obtained through synthetic organic chemistry. This review highlights key aspects of this field, which is complementary to current efforts based on polymeric, nanostructured or inorganic thermoelectric materials and indicates opportunities whereby mainstream organic chemists can contribute.1 What Are Thermoelectrics? And Why Use Them?2 Current Organic and Hybrid Thermoelectrics3 Unique Materials from Tetrathiotetracenes4 Synthesis of Tetrathiotetracenes5 Materials and Device Applications6 Future Perspectives


2006 ◽  
Vol 9 (6) ◽  
pp. 963-964 ◽  
Author(s):  
Nancy L. Segal

AbstractVirtual twins (VTs; same-age unrelated siblings reared together from early infancy) have been studied at California State University (CSU), Fullerton since 1991. The current sample includes over 130 pairs. Past and current research have research have focused on siblings' similarities and differences in general intelligence and body size. Future research in these areas will continue as new pairs continue to be identified. These studies will be supplemented by analyses of personality, social relations and adjustment using monozygotic (MZ) twins, dizygotic (DZ) twins, full siblings and friends, as well as new VTs, who have participated in Twins, Adoptees, Peers and Siblings (TAPS), a collaborative project conducted between CSU Fullerton and the University of San Francisco, from 2002 to 2006.


2021 ◽  
pp. 147892992110594
Author(s):  
Peter John Loewen ◽  
Daniel Rubenson

Experimental research by political scientists on elites has grown dramatically in recent years. Experimenting on and with elites raises important questions, both practical and ethical. Elites are busy people, doing important work under public scrutiny. Therefore, any experiments that use up political elites’ time, risk impairing their ability to do their jobs as well as possible, or put at risk the larger research community’s access to elites should be avoided. Nevertheless, despite these risks and challenges, we argue experimenting with elites has enough benefits both to the research community and to elites themselves, that it should still be done. The relevant question then becomes how should we think about doing experiments with political elites? We propose a framework of value-added and transparent experiments. Our framework is guided by the following two simple rules: Elite subjects should individually benefit from the process of doing the experiment. It should add value to their role as representatives. Second, the identity of the researchers and purposes of the experiment should be transparent. As we argue, these two combined features can still accommodate a large range of experiments, can creatively spark researchers to think up new designs and can protect access to elites for future research. We review two such examples at the end of this essay.


Sign in / Sign up

Export Citation Format

Share Document