Design of a Cross Flow Turbine for a Micro-Hydro Power Application

Author(s):  
Javed A. Chattha ◽  
Mohammad S. Khan ◽  
Syed T. Wasif ◽  
Osama A. Ghani ◽  
Mohammad O. Zia ◽  
...  

The total installed capacity of the hydropower stations in Pakistan is about 7,000 MW which is about 20% of the total available hydro power potential. For possible micro-hydro stations, a potential of about 1300 MW exists at a number of low head and high flow rate sites. Work has been reported by Chattha et al. [1, 2] related to installation of a micro-hydro power station at one of the typical sites. An axial flow pump-as-turbine (PaT) was installed to generate electrical power at the micro-hydro station. The site selected for this work is quite typical and efforts are now being made to utilize the maximum potential of the site conditions. The PaT only utilizes about half of the available flow of water and a spillway was constructed at this site to divert the excess amount of water. The diverted water flows back to the main stream after bypassing the PaT. Work is now being carried out to explore the installation of a turbine in the spillway to harness the energy potential of the diverted water stream. This work includes selection, design, fabrication and installation of a turbine in order to generate electrical power utilizing the energy of water diverted to the spillway. A 100 ft3/sec flow rate with about 11 ft head is available at the spillway side. Considering these site conditions and indigenous fabrication expertise, cross flow type turbine has been selected for installation. Cross flow turbines are being manufactured in Pakistan and are usually quite successful for micro-hydro systems. Based on the available site conditions, a cross flow turbine has been designed. The diameter and length of the turbine runner have been calculated. Furthermore, the number of blades and radius of curvature have been determined along with other design parameters. The designed turbine is expected to produce about 50 kW of power. The complete design of the turbine, based on the available site conditions is presented in this paper.

Author(s):  
J. A. Chattha ◽  
M. S. Khan ◽  
H. Iftekhar ◽  
S. Shahid

Pakistan has a hydro potential of approximately 42,000MW; however only 7,000MW is being utilized for electrical power production [1, 2]. Out of 42,000 MW, micro hydro potential is about 1,300MW [1, 2]. For typical site conditions (available flow rate and head) in Pakistan, Cross Flow Turbines (CFTs) are best suited for medium head 5–150m [3] for micro-hydro power production. The design of CFT generally includes details of; the diameter of the CFT runner, number of blades, radius of curvature and diameter ratio. This paper discusses the design of various CFTs for typical Pakistan site conditions in order to standardize the design of CFTs based on efficiency that is best suited for a given site conditions. The turbine efficiency as a function of specific speed will provide a guide for cross flow turbine selection based on standardized turbine for manufacturing purposes. Standardization of CFT design will not only facilitate manufacturing of CFT based on the available site conditions with high turbine efficiency but also result in reduced manufacturing cost.


MECHANICAL ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 57
Author(s):  
Jorfri Boike Sinaga ◽  
Azhar Azhar ◽  
Novri Tanti ◽  
Sugiman Sugiman

This paper presents the design of parameters of  hydraulic ram pump and hydraulic turbine to use  the energy of flowing water for water supply to generate electrical power and irrigation. Design of  parameters of hydraulic ram pump with head of water supply of 1,5 m was obtained: 1,25 in. diameter and  8 m length of drive pipe,  200 gr and 4,6 cm of weight  and diameter of impulse valve,  4.200 cm3 of air chamber volume. The testing results of the hydraulic ram pump model shown that water could be pumped as far as the height of 7 m and 8 m, with the volume flow rate of 2,755 lit/men and 1,73 lit/men.  Design of  geometric parameters of cross flow hydraulic turbine with head of water supply of 1,75 m was obtained:  12 cm and 8 cm of external and internal diameter, 25 cm of runner width,  and 18 of runner number.   The testing results of the cross flow hydraulic turbine shown that power could be generated 83,47 W with the volume flow rate of 0,01 lit/s and the efficiency of 71,05 % at 799 rpm. The testing result also shown that with using volume flow rate of 0,003 lit/s, this turbine could be generated 23,39 W with the efficiency of 46,64 %. Technically the technology of hydraulic ram pump can be developped and used to supply of water for irrigation and generating of electrical power.


2018 ◽  
Vol 13 (1) ◽  
pp. 1-9
Author(s):  
Manchan Tiwari ◽  
Rajendra Shrestha

Most of the major micro hydro power plants in Nepal uses Crossflow turbine for power generation which are manufactured locally. However, efficiency of these turbines has not been tested and verified. In this research, Cross flow turbine designs were obtained from local manufacturers. Efficiencies of these turbines were determined using simulation under steady state condition. Efficiencies were verified using the data from the installation site where these designs were used. Different Cross flow turbine models were prepared by varying the curvature radius of the blade and the ratio of inner to outer radius of the runner. The efficiencies of such models were determined using simulation.Journal of the Institute of Engineering, 2017, 13(1): 1-9


2018 ◽  
Vol 29 (3) ◽  
pp. 392-409
Author(s):  
Faramarz Sarhaddi

In this paper, the performance analysis of a stepped solar still connected to photovoltaic thermal collector is carried out numerically and experimentally. A transient thermal model is obtained by writing energy balance for the various components of solar still system (i.e. glass cover, saline water, absorber plate, photovoltaic thermal collector). Also, an expression for the energy efficiency of system is derived. An experimental setup is designed and fabricated. The simulation results are validated by the measured experimental data. Finally, parametric studies are carried out and the effect of various operating and design parameters on the energy efficiency, freshwater productivity, and output electrical power is investigated. It is observed that there is a desired value for the mass flow rate of saline water and the area of photovoltaic thermal collector, which maximizes the energy efficiency. The desired value of the mass flow rate and photovoltaic thermal collector area is 0.068 kg/min and 1.33 m2, respectively. Furthermore, the connection of photovoltaic thermal collector to the stepped solar still improves the freshwater productivity and energy efficiency and it provides additional electrical power for other applications.


2019 ◽  
Vol 4 (1) ◽  
pp. 13 ◽  
Author(s):  
Irwansyah Syam ◽  
Muhammad Ilham Maulana ◽  
Ahmad Syuhada

Renewable energy is energy derived from nature and can be produced continuously such as water energy as a micro hydropower plant. The development of a micro hydropower plant is to utilize the potential energy of water flow that has a certain head and discharge to be converted by turbines and generators into energy electricity that can be used in the development of Archimedes Single Screw Turbines. Archimedes Single Screw Turbine is a type of turbine that is capable of operating with low head 1-15 meter in river flow and irrigation. Aceh is one of the regions that have a large amount of water energy potential to be used as energy driving water turbines. The purpose of this study is to design, make Turbine Archimedes Single Screw construction and conduct turbine testing and determine the performance of Archimedes Single Screw Turbine based on the effect of water flow discharge on rotation, torque, power, and optimum efficiency so that it can determine the right turbine design and performance well. Archimedes Single Screw turbine is made with 201 stainless steel which has dimensions of N = 1 blade (Ro= 130 mm, Ri = 70 mm) with pitch 2Ro, Turbine length (L = 2 m), head = 1 m, Angle θ = 300. The variables measured and observed are the rotation of the turbine, torque, and flow rate. Tests were carried out on 3 variations of flow rate, namely 0.02 m3/s, 0.009 m3/s, and 0.003 m3/s. The test results, the highest rotation, and turbine power occur at flowrate 0.02 m3/s at 236.40 rpm with a power of 116.10 watts and maximum turbine efficiency is 57%. Thus, the turbine with maximum power and efficiency is obtained when the flow rate is 0.02 m3 /s.


Author(s):  
И. Семикопенко ◽  
Igor' Semikopenko ◽  
В. Воронов ◽  
Vitaliy Voronov ◽  
Д. Смирнов ◽  
...  

Currently, disintegrators are equipment used for grinding, mixing and activation of a number of materials. The possibility of obtaining a grinding product with a given granulometric composition is one of the advantages of disintegrators. An experimental unit with a recycling pipe is created to obtain a narrow granulometric composition of the grinding product. It provides unloading of the finished product and returning the grits for additional grinding to the chamber. The branch pipe of the recycle is a rubber-fabric pipe of circular cross-section with a radius of curvature, which ensures the movement of a two-phase medium from the discharge zone to the loading part of the disintegrator. When performing theoretical studies of the grinding process, it is necessary to coordinate the throughput of the loading unit and the node of the disintegrator recycle. In addition, the mass flow rate of the material through the feeder and the mass flow rate of the material (throughput) passing through the rows of percussion elements must be the same for the balanced operation of the disintegrator and the feeder. The mass flow capacity of the coarse material moving in the recycling pipe is determined based on the assumption of the linear nature of the change in bulk density when the material moves inside the recycling pipe. In result of theoretical researches, the analytical expression is received allowing to define a radius of a pipe of the modernized feeder proceeding from constructive and technological parameters of a disintegrator with a branch pipe of a recycle. A calculation scheme for determining the radius of the pipe of an improved disintegrator is presented. The analysis of obtained analytical expression allows to conclude that the radius of the pipe of the modernized unit is associated with the design and technological parameters of the disintegrator


Author(s):  
Farah Abdulzahra Taher ◽  
Zena Khalefa Kadhim

The aim of this study to improve the performance of heat exchanger by using the medium integral fins on the cross flow heat exchanger practically, so, two the heat exchangers from copper were manufactures with eight passes for comparison under different boundary conditions. The water flow rate flow inner the tubes with (2, 3, 4, 5, 6) L/min with inlet temperatures (50, 60, 70) oC, as for the air flow rate were passed outer the tubes by speeds (1, 1.7, 2.3) m/sec. The results show that the medium integral finned tube gives more improvement the heat transfer than the smooth tube about 203.97% and 205.1% was enhancement factor. Motivation: The aim is improvement the heat transfer coefficient for cross flow heat exchanger by using medium integral finned tube. Study the effect of various water stream rate, air speed and inlet water temperature on heat transfer coefficient for them, Finding the cases which enhanced heat transfer for various ranges of air and water as well as inlet temperatures and the speed at the entrance. Develop the empirical correlations for (Nua) of smooth and medium integral finned tubes as function of (Pra) and (Rea).


Author(s):  
Oluwole K. Bowoto ◽  
Omonigho P. Emenuvwe ◽  
Meysam N. Azadani

AbstractThis study proposes a design model for conserving and utilizing energy affordably and intermittently considering the wind rush experienced in the patronage of renewable energy sources for cheaper generation of electricity and the solar energy potential especially in continents of Africa and Asia. Essentially, the global quest for sustainable development across every sector is on the rise; hence, the need for a sustainable method of extracting energy cheaply with less wastage and pollution is on the priority list. This research, integrates and formulates different ideologies, factors and variables that have been adopted in previous research studies to create an efficient system. Some of the aforementioned researches includes pumped hydro gravity storage system, Compressed air gravity storage system, suspended weight in abandoned mine shaft, dynamic modelling of gravity energy storage coupled with a PV energy plant and deep ocean gravity energy storage. As an alternative and a modification to these systems, this research is proposing a Combined solar and gravity energy storage system. The design synthesis and computational modelling of the proposed system model were investigated using a constant height and but varying mass. Efficiencies reaching up to 62% was achieved using the chosen design experimental parameters adopted in this work. However, this efficiency can be tremendously improved upon if the design parameters are modified putting certain key factors which are highlighted in the limitation aspect of this research into consideration. Also, it was observed that for a test load of 50 × 103 mA running for 10 h (3600 s), the proposed system will only need to provide a torque of 3.27Nm and a height range of 66.1 × 104 m when a mass of 10 kg is lifted to give out power of 48 kwh. Since gravity storage requires intermittent actions and structured motions, mathematical models were used to analyse the system performance characteristics amongst other important parameters using tools like MATLAB Simscape modelling toolbox, Microsoft excel and Sysml Model software.


Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


Sign in / Sign up

Export Citation Format

Share Document