Steam Generator for Advanced Ultra Supercritical Power Plants 700C to 760C

Author(s):  
Paul S. Weitzel

Advanced ultra-supercritical (A-USC) is a term used to designate a coal-fired power plant design with the inlet steam temperature to the turbine at 700 to 760C (1292 to 1400F). Average metal temperatures of the final superheater and final reheater could run higher, at up to about 815C (1500F). Nickel-based alloy materials are thus required. Increasing the efficiency of the Rankine regenerative-reheat steam cycle to improve the economics of electric power generation and to achieve lower cost of electricity has been a long sought after goal. Efficiency improvement is also a means for reducing the emission of carbon dioxide (CO2) and the cost of capture, as well as a means to reduce fuel consumption costs. In the United States (U.S.), European Union, India, China and Japan, industry support associations and private companies working to advance steam generator design technology have established programs for materials development of nickel-based alloys needed for use above 700C (1292F). The worldwide abundance of less expensive coal has driven economic growth. The challenge is to continue to improve the efficiency of coal-fired power generation technology, representing nearly 50% of the U.S. production, while maintaining economic electric power costs with plants that have favorable electric grid system operational characteristics for turndown and rate of load change response. The technical viability of A-USC is being demonstrated in the development programs of new alloys for use in the coal-fired environment where coal ash corrosion and steamside oxidation are the primary failure mechanisms. Identification of the creep rupture properties of alloys for higher temperature service under both laboratory and actual field conditions has been undertaken in a long-term program sponsored by the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO). Ultimately, the economic viability of A-USC power plants is predicated on the comparable lower levelized cost of electricity (LCOE) with carbon capture and sequestration (CCS) using either oxy-combustion or post-combustion capture. Using nickel alloy components will drive the design and configuration arrangement of the steam generator relative to the plant. A-USC acceptance depends on achieving the higher functional value and lowering the perceived level of risks as this generation technology appears in a new form.

Author(s):  
P. J. Dechamps

Natural gas fired combined cycle power plants now take a substantial share of the power generation market, mainly because they can be delivering power with a remarkable efficiency shortly after the decision to install is taken, and because they are a relatively low capital cost option. The power generation markets becoming more and more competitive in terms of the cost of electricity, the trend is to go for high performance equipments, notably as far as the gas turbine and the heat recovery steam generator are concerned. The heat recovery steam generator is the essential link in the combined cycle plant, and should be optimized with respect to the cost of electricity. This asks for a techno-economic optimization with an objective function which comprises both the plant efficiency and the initial investment. This paper applies on an example the incremental cost method, which allows to optimize parameters like the pinch points and the superheat temperatures. The influence of the plant load duty on this optimization is emphasized. This is essential, because the load factor will not usually remain constant during the plant life-time. The example which is presented shows the influence of the load factor, which is important, as the plant goes down in merit order with time, following the introduction of more modern, more efficient power plants on the same grid.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3463
Author(s):  
Xueliang Yuan ◽  
Leping Chen ◽  
Xuerou Sheng ◽  
Mengyue Liu ◽  
Yue Xu ◽  
...  

Economic cost is decisive for the development of different power generation. Life cycle cost (LCC) is a useful tool in calculating the cost at all life stages of electricity generation. This study improves the levelized cost of electricity (LCOE) model as the LCC calculation methods from three aspects, including considering the quantification of external cost, expanding the compositions of internal cost, and discounting power generation. The improved LCOE model is applied to three representative kinds of power generation, namely, coal-fired, biomass, and wind power in China, in the base year 2015. The external cost is quantified based on the ReCiPe model and an economic value conversion factor system. Results show that the internal cost of coal-fired, biomass, and wind power are 0.049, 0.098, and 0.081 USD/kWh, separately. With the quantification of external cost, the LCCs of the three are 0.275, 0.249, and 0.081 USD/kWh, respectively. Sensitivity analysis is conducted on the discount rate and five cost factors, namely, the capital cost, raw material cost, operational and maintenance cost (O&M cost), other annual costs, and external costs. The results provide a quantitative reference for decision makings of electricity production and consumption.


Author(s):  
William D. Rezak

One of America’s best kept secrets is the success of its nuclear electric power industry. This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result—the US nuclear industry is alive and well. Perhaps it’s time to start anew the building of nuclear power plants. Let’s take the wraps off the major successes achieved in the nuclear power industry. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in 34 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crisis in California. Traditionally, the evaluation of electric power generation facility performance has focused on the ability of plants to produce at design capacity for high percentages of the time. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year’s operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation is minimal. It’s time, once more, to turn to the safe, reliable, environmentally friendly nuclear power alternative.


Author(s):  
Paul S. Weitzel

Babcock & Wilcox Power Generation Group, Inc. (B&W) has received a competitively bid award from the United States (U.S.) Department of Energy to perform the preliminary front-end engineering design of an advanced ultra-supercritical (A-USC) steam superheater for a future A-USC component test program (ComTest) achieving 760C (1400F) steam temperature. The current award will provide the engineering data necessary for proceeding to detail engineering, manufacturing, construction and operation of a ComTest. The steam generator superheater would subsequently supply the steam to an A-USC intermediate pressure steam turbine. For this study the ComTest facility site is being considered at the Youngstown Thermal heating plant facility in Youngstown, Ohio. The ComTest program is important because it would place functioning A-USC components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide initial hands-on training experience. Preliminary fabrication, construction and commissioning plans are to be developed in the study. A follow-on project would eventually provide a means to exercise the complete supply chain events required to practice and refine the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants would then be able to transfer knowledge and recommendations to the industry. ComTest is conceived as firing natural gas in a separate standalone facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the U.S. Components at suitable scale in ComTest provide more assurance before applying them to a full size A-USC demonstration plant. The description of the pre-front-end engineering design study and current results will be presented.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough (PT) technology can be considered the state of the art for solar thermal power plants thanks to the almost 30 yr of experience gained in SEGS and, recently, Nevada Solar One plants in the United States and Andasol plant in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, research has focused on developing new solutions that aim to reduce costs. This paper compares, at nominal conditions, commercial Fresnel technology for direct steam generation with conventional parabolic trough technology based on synthetic oil as heat-transfer. The comparison addresses nominal conditions as well as annual average performance. In both technologies, no thermal storage system is considered. Performance is calculated by Thermoflex®, a commercial code, with a dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology has an optical efficiency of 67%, which is lower than the 75% efficiency of the parabolic trough. Calculated net electric efficiency is about 19.25%, whereas PT technology achieves 23.6% efficiency. In off-design conditions, the performance gap between Fresnel and parabolic trough increases because the former is significantly affected by high incident angles of solar radiation. The calculated sun-to-electric annual average efficiency for a Fresnel plant is 10.2%, which is a consequence of the average optical efficiency of 38.8%; a parabolic trough achieves an overall efficiency of 16%, with an optical efficiency of 52.7%. An additional case with a Fresnel collector and synthetic-oil outlines the differences among the cases investigated. Since part of the performance difference between Fresnel and PT technologies is simply due to different definitions, we introduce additional indexes to make a consistent comparison. Finally, a simplified economic assessment shows that Fresnel collectors must reduce investment costs of at least 45% than parabolic trough to achieve the same levelized cost of electricity.


2014 ◽  
Vol 24 ◽  
pp. 115-123 ◽  
Author(s):  
Larissa Pinheiro Pupo Nogueira ◽  
André Frossard Pereira de Lucena ◽  
Régis Rathmann ◽  
Pedro Rua Rodriguez Rochedo ◽  
Alexandre Szklo ◽  
...  

Author(s):  
John T. Langaker ◽  
Christopher Hamker ◽  
Ralph Wyndrum

Large natural gas fired combined cycle electric power plants, while being an increasingly efficient and cost effective technology, are traditionally large consumers of water resources, while also discharging cooling tower blowdown at a similar rate. Water use is mostly attributed to the heat rejection needs of the gas turbine generator, the steam turbine generator, and the steam cycle condenser. Cooling with air, i.e. dry cooling, instead of water can virtually eliminate the environmental impact associated with water usage. Commissioned in the fall of 2010 with this in mind, the Halton Hills Generating Station located in the Greater Toronto West Area, Ontario, Canada, is a nominally-rated 700 Megawatt combined cycle electric generating station that is 100 percent cooled using various air-cooled heat exchangers. The resulting water consumption and wastewater discharge of this power plant is significantly less than comparably sized electric generating plants that derive cooling from wet methods (i.e, evaporative cooling towers). To incorporate dry cooling into such a power plant, it is necessary to consider several factors that play important roles both during plant design as well as construction and commissioning of the plant equipment, including the dry cooling systems. From the beginning a power plant general arrangement and space must account for dry cooling’s increase plot area requirements; constraints therein may render air cooling an impossible solution. Second, air cooling dictates specific parameters of major and auxiliary equipment operation that must be understood and coordinated upon purchase of such equipment. Until recently traditional wet cooling has driven standard designs, which now, in light of dry cooling’s increase in use, must be re-evaluated in full prior to purchase. Lastly, the construction and commissioning of air-cooling plant equipment is a significant effort which demands good planning and execution.


2014 ◽  
Vol 21 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Robert Kasperek ◽  
Mirosław Wiatkowski

Abstract Adopted in 2009, the Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources sets out the rules for how Poland is to achieve the 15% target of total primary energy from renewables by 2020. However, there are fears that the goals set out in this Directive may not be met. The share of Renewable Energy Sources (RES) in national energy consumption (150 TWh) is estimated at 8.6 TWh in 2009 and 12 TWh in 2011 (5.7 and 8% respectively). The level of RES in Poland until 2005 was approx. 7.2%. The analysis of RES technologies currently in use in Poland shows that in terms of the share in the total capacity, the 750 hydro-electric power plants which are currently in operation (with the overall capacity of almost 0.95 GW) are second only to wind power stations (2 GW). The authors have studied the Nysa Klodzka River in terms of possible locations for hydro-electric facilities. Eight locations have been identified where power plants might be constructed with installed capacities ranging from 319 to 1717 kW. The expected total annual electric power generation of these locations would stand at approx. 37.5 GWh.


Sign in / Sign up

Export Citation Format

Share Document