Influence of Excess Air Factor on NOx Emissions From a 200 kW Swirl Burner

Author(s):  
Abdallah Ahmed ◽  
Essam E. Khalil ◽  
Hatem Kayed ◽  
Mohamed M. A. Hassan

NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation of nitrogen with the fuel (prompt NOx). The present study aims to investigate numerically the problem of NOx pollution using a model of combustion chamber with 200 kW swirl burner utilizing propane as fuel. The importance of this problem is mainly due to its relation to the pollutants produced by boiler furnaces and gas turbines, which used widely in thermal industrial plants. Governing conservation equations of mass, momentum and energy, and equations representing the transport of species concentrations, turbulence, combustion and radiation modeling in addition to NOx modeling equations were solved together to present temperature and OH distribution inside the combustion chamber, and the NOx concentration at the combustion chamber exit, at various operating conditions of fuel to air ratio. In particular, the simulation provided more insight on the correlation between the peak flame temperature and the thermal NOx concentration. The results have shown that the peak flame temperature and NOx concentration decrease as the excess air factor λ increases. When considering a fixed value of mass flow rate of fuel, the results show that increasing λ results in a maximum value of thermal NOx concentration at the exit of the combustion chamber at λ = 1.05. As the combustion air temperature increases, and the thermal NOx concentration increases sharply. However, when λ exceeds this value NOx concentration starts to decrease due to the combustion air temperature decrease.

Author(s):  
R. L. G. M. Eggels

To obtain a better understanding of the internal combustion processes of gas turbines, CFD computations of a combustion chamber, based on a Rolls-Royce industrial gas turbine, were performed. Minor simplifications are made to generate a 3-D rotational symmetric geometry. Computations are performed at typical gas turbine conditions and natural gas is used as the fuel. An internal Rolls-Royce CFD code is applied to perform the computations. This paper explains the models used for the CFD computations and describes the advantages and limitations on the applied models. The combustion process has been modelled using a two-step global reaction mechanism and Intrinsic Low Dimensional Manifold (ILDM) reduced reaction mechanisms. The global reaction mechanisms are optimised for the considered operating conditions by modification of the reaction rates so that the same burning velocity and the amplitude CO-peak are obtained as predicted by detailed reaction mechanism (GRI 2.11, Bowman 1995). This optimisation is done considering a one-dimensional laminar flame. Although the global reaction mechanism is optimised for one particular operating condition, it appears that it is suitable for use over the entire range of operating conditions. The ILDM reduced reaction mechanisms are derived from GRI 2.11. Two ILDM tables are used to model two operating conditions, as they are specific for the pressure and inlet temperature. The interaction between turbulence and chemistry is modelled using presumed Probability Density Functions (PDF). The flow field in the combustion chamber is studied at isothermal and combusting conditions. It appeared that the flow field for burning and non-burning circumstances is quite different. There is a lack of experimental data so that it is not possible to verify the CFD results in detail. However, there is knowledge about the mechanisms by which the flame is stabilised and emissions are measured in the exhaust. The predicted flame front position agrees with that which is experimentally observed. The predicted increase of CO at low power is at the same order of magnitude as the measured emissions.


Author(s):  
Shan Li ◽  
Shanshan Zhang ◽  
Lingyun Hou ◽  
Zhuyin Ren

Modern gas turbines in power systems employ lean premixed combustion to lower flame temperature and thus achieve low NOx emissions. The fuel/air mixing process and its impacts on emissions are of paramount importance to combustor performance. In this study, the mixing process in a methane-fired model combustor was studied through an integrated experimental and numerical study. The experimental results show that at the dump location, the time-averaged fuel/air unmixedness is less than 10% over a wide range of testing conditions, demonstrating the good mixing performance of the specific premixer on the time-averaged level. A study of the effects of turbulent Schmidt number on the unmixedness prediction shows that for the complex flow field involved, it is challenging for Reynolds-Averaged Navier-Stokes (RANS) simulations with constant turbulent Schmidt number to accurately predict the mixing process throughout the combustor. Further analysis reveals that the production and scalar dissipation are the key physical processes controlling the fuel/air mixing. Finally, the NOx formation in this model combustor was analyzed and modelled through a flamelet-based approach, in which NOx formation is characterized through flame-front NOx and its post-flame formation rate obtained from one-dimensional laminar premixed flames. The effect of fuel/air unmixedness on NOx formation is accounted for through the presumed probability density functions (PDF) of mixture fraction. Results show that the measured NOx in the model combustor are bounded by the model predictions with the fuel/air unmixedness being 3% and 5% of the maximum unmixedness. In the context of RANS, the accuracy in NOx prediction depends on the unmixedness prediction which is sensitive to turbulent Schmidt number.


Author(s):  
G. Arvind Rao ◽  
Yeshayahou Levy ◽  
Ephraim J. Gutmark

Flameless combustion (FC) is one of the most promising techniques of reducing harmful emissions from combustion systems. FC is a combustion phenomenon that takes place at low O2 concentration and high inlet reactant temperature. This unique combination results in a distributed combustion regime with a lower adiabatic flame temperature. The paper focuses on investigating the chemical kinetics of an prototype combustion chamber built at the university of Cincinnati with an aim of establishing flameless regime and demonstrating the applicability of FC to gas turbine engines. A Chemical reactor model (CRM) has been built for emulating the reactions within the combustor. The entire combustion chamber has been divided into appropriate number of Perfectly Stirred Reactors (PSRs) and Plug Flow Reactors (PFRs). The interconnections between these reactors and the residence times of these reactors are based on the PIV studies of the combustor flow field. The CRM model has then been used to predict the combustor emission profile for various equivalence ratios. The results obtained from CRM model show that the emission from the combustor are quite less at low equivalence ratios and have been found to be in reasonable agreement with experimental observations. The chemical kinetic analysis gives an insight on the role of vitiated combustion gases in suppressing the formation of pollutants within the combustion process.


Author(s):  
Yeshayahou Levy ◽  
Vladimir Erenburg ◽  
Valery Sherbaum ◽  
Vitali Ovcharenko ◽  
Leonid Rosentsvit ◽  
...  

Lean premixed combustion is one of the widely used methods for NOx reduction in gas turbines (GT). When this method is used combustion takes place under low Equivalence Ratio (ER) and at relatively low combustion temperature. While reducing temperature decreases NOx formation, lowering temperature reduces the reaction rate of the hydrocarbon–oxygen reactions and deteriorates combustion stability. The objective of the present work was to study the possibility to decrease the lower limit of the stable combustion regime by the injection of free radicals into the combustion zone. A lean premixed gaseous combustor was designed to include a circumferential concentric pilot flame. The pilot combustor operates under rich fuel to air ratio, therefore it generates a significant amount of reactive radicals. The experiments as well as CFD and CHEMKIN simulations showed that despite of the high temperatures obtained in the vicinity of the pilot ring, the radicals’ injection from the pilot combustor has the potential to lower the limit of the global ER (and temperatures) while maintaining stable combustion. Spectrometric measurements along the combustor showed that the fuel-rich pilot flame generates free radicals that augment combustion stability. In order to study the relevant mechanisms responsible for combustion stabilization, CHEMKIN simulations were performed. The developed chemical network model took into account some of the basic parameters of the combustion process: ER, residence time, and the distribution of the reactances along the combustor. The CHEMKIN simulations showed satisfactory agreement with experimental results.


Author(s):  
Marek Dzida ◽  
Krzysztof Kosowski

In bibliography we can find many methods of determining pressure drop in the combustion chambers of gas turbines, but there is only very few data of experimental results. This article presents the experimental investigations of pressure drop in the combustion chamber over a wide range of part-load performances (from minimal power up to take-off power). Our research was carried out on an aircraft gas turbine of small output. The experimental results have proved that relative pressure drop changes with respect to fuel flow over the whole range of operating conditions. The results were then compared with theoretical methods.


Author(s):  
Daniel Sequera ◽  
Ajay K. Agrawal

Lean Premixed Combustion (LPM) is a widely used approach to effectively reduce pollutant emissions in advanced gas turbines. Most LPM combustion systems employ the swirling flow with a bluff body at the center to stabilize the flame. The flow recirculation region established downstream of the bluff-body brings combustion products in contact with fresh reactants to sustain the reactions. However, such systems are prone to combustion oscillations and flame flashback, especially if high hydrogen containing fuels are used. Low-Swirl Injector (LSI) is an innovative approach, whereby a freely propagating LPM flame is stabilized in a diverging flow field surrounded by a weakly-swirling flow. The LSI is devoid of the flow recirculation region in the reaction zone. In the present study, emissions measurements are reported for a LSI operated on mixtures of methane (CH4), hydrogen (H2), and carbon monoxide (CO) to simulate H2 synthetic gas produced by coal gasification. For a fixed adiabatic flame temperature and air flow rate, CH4 content of the fuel in atmospheric pressure experiments is varied from 100% to 50% (by volume) with the remainder of the fuel containing equal amounts of CO and H2. For each test case, the CO and nitric oxide (NOx) emissions are measured axially at the combustor center and radially at several axial locations. Results show that the LSI provides stable flame for a range of operating conditions and fuel mixtures. The emissions are relatively insensitive to the fuel composition within the operational range of the present experiments.


Author(s):  
K. K. Botros ◽  
M. J. de Boer ◽  
G. Kibrya

A one dimensional model based on fundamental principles of gas turbine thermodynamics and combustion processes was constructed to quantify the principle of exhaust gas recirculation (EGR) for NOx reduction. The model utilizes the commercial process simulation software ASPEN PLUS®. Employing a set of 8 reactions including the Zeldovich mechanism, the model predicted thermal NOx formation as function of amount of recirculation and the degree of recirculate cooling. Results show that addition of sufficient quantities of uncooled recirculate to the inlet air (i.e. EGR>∼4%) could significantly decrease NOx emissions but at a cost of lower thermal efficiency and specific work. Cooling the recirculate also reduced NOx at lower quantities of recirculation. This has also the benefit of decreasing losses in the thermal efficiency and in the specific work output. Comparison of a ‘rubber’ and ‘non-rubber’ gas turbine confirmed that residence time is one important factor in NOx formation.


Author(s):  
Raffaela Calabria ◽  
Fabio Chiariello ◽  
Patrizio Massoli ◽  
Fabrizio Reale

In recent years an increasing interest is focused on the study of micro gas turbines (MGT) behavior at part load by varying fuel, in order to determine their versatility. The interest in using MGT is related to the possibility of feeding with a wide range of fuels and to realize efficient cogenerative cycles by recovering heat from exhaust gases at higher temperatures. In this context, the studies on micro gas turbines are focused on the analysis of the machine versatility and flexibility, when operating conditions and fuels are significantly varied. In line of principle, in case of gaseous fuels with similar Wobbe Index no modifications to the combustion chamber should be required. The adoption of fuels whose properties differ greatly from those of design can require relevant modifications of the combustor, besides the proper adaptation of the feeding system. Thus, at low loads or low calorific value fuels, the combustor becomes a critical component of the entire MGT, as regards stability and emissions of the combustion process. Focus of the paper is a 3D CFD analysis of the combustor behavior of a Turbec T100P fueled at different loads and fuels. Differences between combustors designed for natural gas and liquid fuels are also highlighted. In case of natural gas, inlet combustor temperature and pressure were taken from experimental data; in case of different fuels, such data were inferred by using a thermodynamic model which takes into account rotating components behavior through operating maps of compressor and turbine. Specific aim of the work is to underline potentialities and critical issues of the combustor under study in case of adoption of fuels far from the design one and to suggest possible solutions.


Author(s):  
Pramod S. Mehta ◽  
M. Achuth

A well-timed turbulence due to tumble in SI engines is found to be of substantial benefit to the engine combustion process. A mean flow analysis of tumble motion in conjunction with k-ε turbulence model has been developed to provide a detailed mechanism for turbulence enhancement due to tumble. Considering that the tumble phenomenon is highly geometry dependant, an attempt is made to relate tumble-generated turbulence to the parameters relating to intake conditions and combustion chamber geometry. Finally, a new parameter ‘vortex life span’ has been proposed to characterize tumble and its turbulence, which globally encompasses intake and combustion chamber related features. The sensitivity of this parameter is demonstrated at various operating conditions. It is found that the ‘vortex life span’ has an inverse relationship with commonly measured BDC tumble ratio and is more sensitive to the chamber geometry effects.


2018 ◽  
Author(s):  
Martia Shahsavan ◽  
Mohammadrasool Morovatiyan ◽  
John Hunter Mack

The ignition behavior of the fuel in non-premixed turbulent combustion applications such as diesel engines and gas turbines is dependent on the mixing rate of the injected fuel and the working fluid. In this study, three-dimensional modeling of hydrogen injection into a constant volume combustion chamber (CVCC) is used to investigate the correlation between the mixing rate and important parameters of non-premixed combustion, such as ignition delay. Mixedness is quantified using mean spatial variation, which reflects the homogeneity of the mixture, and mean scalar dissipation, which represents the local gradients of the scalar. The case studies include nitrogen and argon as working fluids; injection velocities and nozzle diameters are varied for comparison. For consistency, the injected mass is kept constant and the injection duration is adjusted accordingly. The results indicate that a strong correlation exists between ignition delay and the defined mixedness parameters. The cases with higher mixedness values lead to a shorter ignition delay and a higher maximum flame temperature. Changing the working fluid and injection parameters can effectively modify the mixedness, and consequently affect the ignition onset and flame properties.


Sign in / Sign up

Export Citation Format

Share Document