Applications of Limit Load Analyses to Assess the Structural Integrity of Pressure Vessels

Author(s):  
Richard C. Biel ◽  
Chris Alexander

With advances in computational modeling techniques, limit load methods are gaining wider acceptance as a tool for determining the structural integrity of pressure vessels. The objective of a limit load analysis is to size a vessel or structure considering nonlinear methods such as elastic-plastic material properties and non-linear strain-displacement relations. Case studies are presented in this paper that feature external pressures, gravity, and wind loads. The technique applies an appropriate initial magnitude for each load type and uses the analysis model to increase the load until a lower bound is calculated. The lower bound value is determined by incrementally increasing the load until convergence is not possible then the results are extracted. This paper presents how limit load techniques were used to address the structural integrity of four engineered systems including the structural stability of a corroded tower under wind and vacuum loads, determining the pressure capacity of a pressure vessel, analysis of a subsea vessel under high external pressures, and the remaining buckling resistance of a dented subsea flowline. The paper highlights the application of limit load techniques using criteria detailed in WRC 464.

Author(s):  
Yongjian Gao ◽  
Yinbiao He ◽  
Ming Cao ◽  
Yuebing Li ◽  
Shiyi Bao ◽  
...  

In-Vessel Retention (IVR) is one of the most important severe accident mitigation strategies of the third generation passive Nuclear Power Plants (NPP). It is intended to demonstrate that in the case of a core melt, the structural integrity of the Reactor Pressure Vessel (RPV) is assured such that there is no leakage of radioactive debris from the RPV. This paper studied the IVR issue using Finite Element Analyses (FEA). Firstly, the tension and creep testing for the SA-508 Gr.3 Cl.1 material in the temperature range of 25°C to 1000°C were performed. Secondly, a FEA model of the RPV lower head was built. Based on the assumption of ideally elastic-plastic material properties derived from the tension testing data, limit analyses were performed under both the thermal and the thermal plus pressure loading conditions where the load bearing capacity was investigated by tracking the propagation of plastic region as a function of pressure increment. Finally, the ideal elastic-plastic material properties incorporating the creep effect are developed from the 100hr isochronous stress-strain curves, limit analyses are carried out as the second step above. The allowable pressures at 0 hr and 100 hr are obtained. This research provides an alternative approach for the structural integrity evaluation for RPV under IVR condition.


Author(s):  
David J. Dewees ◽  
Phillip E. Prueter ◽  
Seetha Ramudu Kummari

Modeling of cyclic elastic-plastic material behavior (hardening) has been widely identified as a critical factor in the finite element (FE) simulation of weld residual stresses. The European Network on Neutron Techniques Standardization for Structural Integrity (NeT) Project has provided in recent years both standard test cases for simulation and measurement, as well as comprehensive material characterization. This has allowed the role of hardening in simulation predictions to be isolated and critically evaluated as never before possible. The material testing information is reviewed, and isotropic, nonlinear kinematic and combined hardening models are formulated and tested. Particular emphasis is placed on material model selection for general fitness-for-service assessments, as it relates to the guidance for weld residual stress (WRS) in flaw assessments of in-service equipment in Annex E of the FFS standard, API 579-1/ASME FFS-1.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Henry Schau ◽  
Lilit Mkrtchyan ◽  
Michael Geier

The effects of imperfections and nonlinearities on the failure mode and the B2 stress index of thin-walled straight pipes are investigated with finite element (FE) analyses. The analyses were performed for pipes made of an ideal elastic–plastic material and the austenitic steel X6CrNiNb18-10. The B2 index is calculated from the instability bending moments obtained by limit load analyses. The effects of initial imperfections as well as the D/t-ratio and the yield stress on the B2 stress index are studied. As a first result, it is noted that thin-walled straight pipes and imperfections fail due to local plastic buckling. Further analyses show that the type of imperfections, the ovality, the D/t-ratio, and the yield stress have significant influences on the B2 index. The obtained B2 indices for thin-walled straight pipes with D/t > 40 and possible technical imperfections are considerably higher than 1.0. The results have been compared with those of other investigations.


Author(s):  
Pattaramon Tantichattanont ◽  
Seshu Adluri ◽  
Rangaswamy Seshadri

Corrosion damage and hot spots are typical of damages that can occur in ageing pressure vessels and pipelines used in industrial processes. Internal and external corrosion could be the result of corrosive products stored inside or harsh environmental conditions on the outside. Hot spots are caused by damage due to loss of refractory lining on the inside wall of pressure components or due to maldistribution of flow containing catalyst and reactive fluids. The structural integrity of such ageing components needs to be evaluated periodically to establish the continued suitability of the vessels under operating conditions. The present paper develops a method for Level 2 (as categorized by API 579) structural integrity evaluations of spherical pressure vessels containing local corrosion damage or hot spot. The decay lengths for spherical shells subject to local damages have been studied based on stretching and bending effects using elastic shell theories so as to identify the reference volume participating in plastic action. A limit for “local” corroded spot or hot spot is defined by the size of damage that an onset of pure membrane action occurs inside the damaged area. The size of damage indicating the crossover from dominance of stretching effects on the damage behavior to that of bending effects is also presented. The lower bound recommended “remaining strength factors” for spherical pressure vessels containing corrosion or hot spot are formulated by application of Mura’s integral mean of yield criterion and the improved lower bound mα-multiplier. Three alternative recommendations are proposed. The effectiveness of the proposed methods is evaluated and demonstrated through illustrative examples and comparison with inelastic finite element analyses.


2016 ◽  
Vol 723 ◽  
pp. 369-375 ◽  
Author(s):  
P.M. Ogar ◽  
D.B. Gorokhov

This paper studies the problem of the relative area changing on a decrease of the load applied to the joint of roughness surfaces. The penetration of a rigid rough sphere (indenter) into the elastic hardenable half-space is initially considered, then the elastic crater restoring by unloading is considered. To defining elastic-plastic material, Hollomon’s power law is used. To describe a contact of a rigid rough surface with an elastic plastic half-space, the discrete model of a rough surface is used. Microasperities are represented as a set of identical spherical segments, the height distribution of which corresponds to the bearing profile curve of the real surface. The dependence the dimensionless force elastic-geometric parameter Fq on a relative amount of indentation ε at loading and the dependence of analogous parameter Fqe on amount of ε-Dε at unloading are obtained. The relations of relative contact areas h and he on dimensionless loading Fq and Fqe at loading and unloading for different values of a hardening exponent n and parameter are given. The obtained results are of practical importance for the performance prediction of fixed machine elements’ joints at the design stage, in particular for tightness supply of flange couplings and high pressure vessels seals.


Author(s):  
Kazuo Ogawa ◽  
Yukihiko Okuda ◽  
Toshiyuki Saito ◽  
Takahiro Hayashi ◽  
Rie Sumiya

Recently, several cracks caused by stress corrosion cracking (SCC) have been found on welds of shroud supports in Boiling Water Reactor (BWR) plants. The major cause of SCC in a weld joint is considered due to welding residual stress generated in the fabrication processes of the components. For continuous safety operations, it is necessary to estimate the structural integrity of such shroud supports with cracks based on the distribution of residual stresses induced by welding. In order to know and to validate the numerical method of residual stresses induced by welding of large scale and complex shaped components, a BWR shroud support mock-up with a hemispherical base of reactor pressure vessel (RPV) was fabricated by Japan Nuclear Energy Safety Organization (JNES) as a national project. The mock-up has a 32° section of actual BWR shroud supports with approximately the same configurations, materials and welding conditions of an actual component. During welding in the fabrication process of the mock-up, temperature was measured and after completion of the mock-up fabrication, surface residual stress distributions for each weld were also measured by the sectioning method. In addition, through-thickness residual stress distributions were investigated. Residual stress for each weld was calculated by using axisymmetric models considering temperature dependent elastic-plastic material properties. Though the actual structure of shroud supports is essentially complex, we simplified axisymmetric models in the center of the cross section. The analysis results show a similar profile and good agreement with the measured results on the surface of all the welds and through the welds at the upper and lower joints of the shroud support leg.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Dan Vlaicu

A cyclically loaded structure made of elastic-plastic material is considered as an elastic shakedown if plastic straining occurs in the first few cycles and the sequent response is wholly elastic. In this paper, the finite element method is used to develop upper and lower bound limits for the elastic shakedown of structures under periodic loading conditions. Linear methods using elastic compensation approach and the residual stress method derived from Melan’s theorem are used to generate the lower bound limit for the shakedown load, while the upper bound is found through a method derived from Koiter’s theorem. Furthermore, the results are compared with cycle-by-cycle method based on nonlinear material properties.


Author(s):  
H. Indermohan ◽  
R. Seshadri

A variational formulation in plasticity has been used to develop improved limit load estimation technique, such as the m-alpha method. Lower bound limit load estimates are especially germane to design and fitness-for-service assessments. The concept of “integral mean of yield” has been applied to problems involving locally thin areas (LTA) and local hot spots in the context of industrial pressure vessels and piping. Simplified procedures for “fitness-for-service” assessment, suitable for use by plant engineers, have been developed. The results are compared with the corresponding inelastic finite elastic analyses.


Author(s):  
Alejandro Andueza ◽  
Thiago Pontual

The structural integrity evaluation of corroded pipelines is very important for the management of systems that are in operation in order to help managers in the important decision of repairing the line. The required models for the analysis of corroded pipelines with multiple corrosion defects are in many cases a hard task to be generated. This paper presents a new methodology for the generation of full 3D hex meshes for the analysis using the Finite Element Method. The algorithm, developed specifically for the analysis of corroded pipelines, makes the task of model generation with multiple corrosion defects easier and faster. Examples with one and two corrosion defects are presented using a linear-elastic material model and the corresponding results compared to the criteria established by ASME code sec. VIII div. 2. The same models are analyzed using ideal elastic-plastic material model in order to determine the minimum failure pressure for the corroded pipes. The numerical failure pressures obtained are also compared to the values obtained from DNV RP-F101 method for single defects and experimental results. Finally, a new repairing methodology that allows the continuous operation of the pipeline in a safer way is presented. This methodology can help managers in the undertaking of scheduling a full repair of the pipeline in a much more flexible way.


1999 ◽  
Vol 121 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. A. Keeney

This paper presents updated analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The NESC was organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards. The objective of the NESC-1 project is to focus on a complete procedure for assessing the structural integrity of aged reactor pressure vessels. A clad cylinder containing through-clad and subclad cracks will be tested under pressurized-thermal shock conditions at AEA Technology, Risley, U.K. Three-dimensional finite-element analyses were carried out to determine the effects of including the cladding heat-affected zone (HAZ) in the models. The cylinder was modeled with inner-surface through-clad cracks having a depth of 74 mm and aspect ratios of 2:1 and 6:1. The cylinder specimen was subjected to centrifugal loading followed by a thermal shock and analyzed with a thermoelastic-plastic material model. The peak KI values occurred at the clad/HAZ interface for the 6:1 crack and at the HAZ/base interface for the 2:1 crack. The analytical results indicate that cleavage initiation is likely to be achieved for the 6:1 crack, but questionable for the 2:1 crack.


Sign in / Sign up

Export Citation Format

Share Document