Shaking Table Tests of Critical Equipment With Simple Isolators

Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Shih-Hsien Yu ◽  
Chen-Tsung Yang

Because the earthquake is one kind of non-predictable calamity and happens suddenly, its disaster and consequence are larger than other calamities. Mankind must face not only the emotional effects caused by earthquakes, but also the damage to the structure and substructure systems. The fire, damaged pipeline systems cased by earthquake and the destruction of the semiconductor, equipment or microelectronics in high-tech factories will cause an enormous and a chain of economic losses. Therefore, there is a need of an economical and efficient method to protect equipments from earthquake damage. Namely, in addition to promoting the earthquake-resistant capacity of structures, it is also important to ensure the safety of the expensive equipment and facilities. In this study, it is aimed at developing a new simple isolator with appropriate damping for critical equipment. The basic principle of the simple isolator is to lengthen the natural period of equipment, and simultaneously to reduce the earthquake-induced energy and the displacement of the isolator by additional damping. A series of shaking table tests for critical equipment isolated with simple isolators were carried out in the Department of Civil Engineering, Feng Chia University, Taichung, Taiwan. From these test results, it is illustrated that the simple isolator can reduce more than 80% responses of accelerations under earthquakes with peak ground acceleration of above 0.450g. Therefore, the simple isolator can be recognized as a feasible and promising way in mitigating the seismic responses of equipment. In addition, the simple isolator possesses enough energy absorbing capacity to reduce its maximum displacement and the restoring force to bring the isolator back to the original position without significant residual displacement.

Author(s):  
C. S. Tsai ◽  
B. J. Chen ◽  
T. C. Chiang

Conventional earthquake resistant designs depend on strengthen and ductility of the structural components to resist induced forces and to dissipate seismic energy. However, this can produce permanent damage to the joints as well as the larger interstory displacements. In recently years, many studies on structural control strategies and devices have been developed and applied in U. S. A., Europe, Japan, and New Zealand. The rubber bearing belongs to one kind of the earthquake-proof ideas of structural control technologies. The installation of rubber bearings can lengthen the natural period of a building and simultaneously reduce the earthquake-induced energy trying to impart to the building. They can reduce the magnitude of the earthquake-induced forces and consequently reduce damage to the structures and its contents, and reduce danger to its occupants. This paper is aimed at studying the mechanical behavior of the stirrup rubber bearings (SRB) and evaluating the feasibility of the buildings equipped with the stirrup rubber bearings. Furthermore, uniaxial, biaxial, and triaxial shaking table tests are conducted to study the seismic response of a full-scale three-story isolated steel structure. Experimental results indicate that the stirrup rubber bearings possess higher damping ratios at higher strains, and that the stirrup rubber bearings provide good protection for structures. It has been proved through the full-scale tests on shaking table that the stirrup rubber bearing is a very promising tool to enhance the seismic resistibility of structures.


Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Ching-Pei Tsou ◽  
Chen-Tsung Yang

Recently, the high-tech industry has become a key industry for economic development in many countries. However, motion sensitive equipments located in these industrial buildings are vulnerable during earthquakes, which may cause huge economic loss. In this study, an isolator for safeguarding the motion sensitive equipment, namely, the static dynamics interchangeable–ball pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the motion sensitive equipment during earthquakes through a series of shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to reduce the large bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the sliding surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the motion sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.


Author(s):  
Satoru Inaba ◽  
Takuya Anabuki ◽  
Kazutaka Shirai ◽  
Shuichi Yabana ◽  
Seiji Kitamura

This paper describes the dynamic damage test of a reinforced concrete (RC) wall structure with seismic isolation sysytem. It has been expected that seismically isolated structures are damaged in sudden when the accelerations of the structures exceed a certain level by hardening of the rubber bearings. However, the response behavior and the damage mode have not been observed by experimental test yet. So, shaking table tests were carried out at “E-Defense”, equipping the world’s largest shaking table, located at Miki City, Hyogo prefecture, Japan. The specimen was composed of an upper structure of 600 ton by weight and six lead-rubber bearings (LRBs) of 505 mm in diameter which provide both stiffness and hysteretic damping. The upper structure consisted of a RC mass and four RC walls with counter weight. The RC wall structure was designed so that the damage of the RC wall occurred between the shear force at the hardening of the rubber bearings and that at their breaking. The dimensions of the RC wall were 1600 × 800 × 100 mm (B × H × t). The reinforcement ratios were 2.46% in vertical by D13 (deformed reinforcing bar, 13 mm in diameter) and 1.0% in horizontal by D10. The shaking table test was conducted consecutively by increasing the levels up to 225% of tentative design earthquake motion. Consequently, because of the increase of the structural response by the hardening of the rubber bearings, the damage of the wall structure with seismic isolation system suddenly happened. In addition, the preliminary finite element analysis simulated the test results fairly well, which were the restoring force characteristics, the crack patterns of the RC wall structure and such.


2020 ◽  
Vol 10 (24) ◽  
pp. 8857
Author(s):  
Antonio Di Cesare ◽  
Felice Carlo Ponzo ◽  
Nicla Lamarucciola ◽  
Domenico Nigro

Passive energy dissipation systems are one of the most resilient solutions to mitigate the seismic risk of structures. In case of strong motions, they can confine the eventual damages into easily replaceable anti-seismic devices. The performance characteristics of nonlinear displacement dependent devices (NLD) shall be defined by the force-displacement cyclic behavior, as well as the expected number of cycles related to both the duration of the earthquake and to the fundamental frequency of the structural systems. The aims of this paper are the comparison between the dynamic results of two different experimental campaigns performed on NLDs included in dissipative bracing systems and the assessment of the reliability of quasi-static testing procedures proposed by current seismic codes for type tests and factory production control tests. The number of cycles under the design earthquake of hysteretic dampers were experimentally evaluated through shaking table testing. Two experimental case studies of a two-story steel frame and of a three-story post-tensioned timber frame both with bracing systems including flexural steel dampers, hysteretic dampers (HDs), and U-shaped flexural plates (UFPs) respectively, were analyzed. Controlled-displacement tests of NLDs were performed considering quasi-static loading procedures specified by codes. Shaking table tests were carried out considering almost the same seismic sequence composed by a set of seven natural earthquakes at increasing peak ground acceleration (PGA) levels. More than one hundred inelastic cycles were experimentally recorded from dynamic tests before the failure of devices in both cases. In line with American standards testing requirements, the number of cycles at the design PGA level, estimated from shaking table tests and from non-linear dynamic analyses, shows a decreasing trend with the increase of ductility demand.


Author(s):  
Shuichi Yabana ◽  
Kenji Kanazawa ◽  
Seiji Nagata ◽  
Seiji Kitamura ◽  
Takeshi Sano

This paper describes results of shaking table tests to grasp ultimate behavior of seismic isolation system under extremely strong earthquake motions, including failure of rubber bearings. The results of the shaking table tests are expected to be useful for the design of seismically isolated nuclear facilities, especially fast breeder reactor (FBR) plants. In the test, lead rubber bearings, of which the diameter is 505 mm and about 1/3 scale of a prototype in planning FBR plants, are used; the test specimens are loaded by the largest three-dimensional shaking table in E-defense of National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. Failure of rubber bearings occurs with amplified tentative design earthquake motions. From the tests, the ultimate responses of the upper structure and rubber bearings are presented. In particular, the change of floor response spectra and restoring force characteristics of rubber bearings according to increase of input motions is discussed. Furthermore, mechanism of the failure of rubber bearings is investigated from the observation of failure surfaces and cut sections, static loading tests, and material tests of rubber bearings. Finally, the function of seismic isolation system after the failure of a part of rubber bearings is confirmed under the tentative design earthquake.


2011 ◽  
Vol 90-93 ◽  
pp. 1942-1949
Author(s):  
Hong Sheng Ma ◽  
Chang Wei Yang

In order to get the seismic active earth pressure with the mode of translation, adopting some related assumptions of the M-O theory, this paper establishes the first-order differential equation of the Seismic active earth pressure by horizontal slices analysis method and gets the solution of the seismic active earth pressure by boundary conditions. This formula can solve the distribution of the seismic active earth pressure is nonlinear along the wall, the point of application of the dynamic active thrust which is the advantage of this formula and announces the decreasing process of the filling’s rupture angle with the increase of the horizontal peak ground acceleration (PGA) , as well. The rationality and validity of the formula is confirmed by the comparison between the results of the shaking table tests and the formula, respectively. If the retaining wall takes place the mode of translation, the point of application of the seismic active thrust ranges between 0.4 and 0.5 times wall’s height at the horizontal seismic peak ground acceleration (PGA)<0.4g.At the same time, the computational accuracy of the dynamic active thrust, their points of application and the angle of rupture increases with the increase of the horizontal peak ground acceleration at the horizontal PGA<1.0g, as the astigmatic of the retaining wall in highly seismic intensity region supplying the valuable reference.


Author(s):  
C. S. Tsai ◽  
Jeng-Wen Lin ◽  
Yung-Chang Lin ◽  
Chia-Chi Chen

In order to promote seismic resistance capability of structures and simplify the manufacturing processes of an isolator, a new base isolation system called the multiple trench friction pendulum system (MTFPS) is proposed. The investigations for the proposed isolator have been carried out to address its mechanical characteristics and to assess its performance in seismic mitigation through a series of shaking table tests in this study. The MTFPS isolator can provide different natural periods, displacement capacities and damping effects in any two independent directions. The natural period and damping effect for a MTFPS isolator change continually during earthquakes. Results from the shaking table tests on a scaled three-story structure isolated with MTFPS isolators illustrate that the proposed MTFPS isolator can isolate most earthquake induced energy and provide good protection for structures from earthquake damage. In addition, the mathematical formulations for the MTFPS isolator have also been derived to examine its characteristics.


Author(s):  
Duozhi Wang ◽  
Junwu Dai ◽  
Xiaoqing Ning

Earthquakes have again highlighted the vulnerability of China’s health facilities. The current investigation of the seismic status of hospital facilities was conducted after the Lushan MW6.6 earthquake, and both structural and nonstructural damage are listed. Structural and nonstructural damage of four typical hospitals and clinics are discussed here. Structural damage is here described alongside damage to architectural elements, equipment, and furnishings caused by earthquakes. This investigation indicated that the hospital facilities can lose partial or full functionality due to nonstructural damage or even limited structural damage. Although none of the objects inside were knocked over and only a few decorations fell down, many sets of equipment were severely damaged because of the strong floor vibration. This resulted in great economic losses and delays in rescue operations after the earthquake. Shaking table tests on a full scale model of a B-ultrasound room were conducted to investigate the seismic performance of a typical room in a hospital. The tests results showed that the acceleration responses of the building contents with or without trundles demonstrated different behaviour. Without trundles, the peak acceleration and the peak displacement of building contents first increased with increasing PGA and then decreased when the acceleration exceeded a particular value. Then they both changed a little. Because of the rapid turning trundles, the response of building contents increased only slightly as PGA increased, or even decreased or remained roughly steady.


Author(s):  
Xiaolei Wang ◽  
Dagang Lu ◽  
Gangling Hou

In order to verify the seismic capacity of reinforced concrete containment vessel (RCCV) under the design earthquake level of SL-2 (peak acceleration 0.25g), shaking table tests of a 1:15 model RCCV are carried out. The El Centro earthquake motion record, the Taft earthquake motion record as well as an artificial earthquake acceleration are employed as the input excitations. There are three load cases for each test stage, with the peak ground acceleration (PGA) being 0.1g, 0.2g and 0.3g, respectively, corresponding to 0.088g, 0.175g and 0.263g for the prototype RCCV structure because of the acceleration ratio of 1.14. The test results indicate that under the earthquake excitation of the acceleration peak 0.1g, 0.2g and 0.3g, the tensile strains at monitoring points on the cylinder don’t reach the cracking level. Using the general-purpose nonlinear finite element analysis program ANSYS, a three-dimensional (3D) model of the scaled model reinforced concrete containment vessel is modeled. The numerical simulation analysis results could match the results of the tests very well. It is shown by the results of the shaking table tests that the model RCCV is still within the elastic range as a whole. In order to analyze the yield displacement of the RCCV, a static nonlinear pushover analysis of the RCCV is carried out. The result shows that the RCCV had sufficient seismic safety margin.


Sign in / Sign up

Export Citation Format

Share Document