A Study on the Residual Stress and Fracture Behavior of Pipeline Girth Welds Joining Pipes of Different Strength

Author(s):  
Woo-sik Kim ◽  
Jong-hyun Baek ◽  
Choel-man Kim ◽  
Young-pyo Kim

The following cases of girth welded region between pipelines having different base strength were considered. The pipeline shows different fracture behavior from girth welded pipeline between similar materials due to strength mismatch and residual stress distribution. Investigation about the residual stress distribution and fracture behavior of pipeline having girth welds of the differnet base metals (X70/X65 and X70/X42) with different material property has performed using finite element analysis. The effect of mismatched material property on girth weld region is negligible when shape of pipeline is similar. The assessment for occurance of crack on girth weld region with pipes with material property mismatched can be replaced by that of the similar pipes with low strength on the point view of conservation.

Author(s):  
Itaru Muroya ◽  
Youichi Iwamoto ◽  
Naoki Ogawa ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa

In recent years, the occurrence of primary water stress corrosion cracking (PWSCC) in Alloy 600 weld regions of PWR plants has increased. In order to evaluate the crack propagation of PWSCC, it is required to estimate stress distribution including residual stress and operational stress through the wall thickness of the Alloy 600 weld region. In a national project in Japan for the purpose of establishing residual stress evaluation method, two test models were produced based on a reactor vessel outlet nozzle of Japanese PWR plants. One (Test model A) was produced using the same welding process applied in Japanese PWR plants in order to measure residual stress distribution of the Alloy 132 weld region. The other (Test model B) was produced using the same fabrication process in Japanese PWR plants in order to measure stress distribution change of the Alloy 132 weld region during fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end. For Test model A, residual stress distribution was obtained using FE analysis, and was compared with the measured stress distribution. By comparing results, it was confirmed that the FE analysis result was in good agreement with the measurement result. For mock up test model B, the stress distribution of selected fabrication processes were measured using the Deep Hole Drilling (DHD) method. From these measurement results, it was found that the stress distribution in thickness direction at the center of the Alloy 132 weld line was changed largely during welding process of the safe end to the main coolant pipe.


Author(s):  
Weihao Chai ◽  
Xiandong Liu ◽  
Yinchun Shan ◽  
Xiaofei Wan ◽  
Er Jiang

To increase the simulation accuracy, a finite element analysis method for the prediction of the residual stress distribution in the injection molded wheel made of the long glass fiber-reinforced thermoplastic composite (LGFT) is studied, and a simulation method of the wheel bending fatigue test considering the residual stress distribution is investigated in this paper. First, the in-cavity residual stress is calculated using the molding simulation method. Then the residual stress relaxation process is analyzed and the final residual stress distribution is obtained. With the residual stress as the initial stress, the structural simulation of the LGFT wheel under the bending load is performed. To evaluate the influence of the residual stress on the LGFT wheel, an additional simulation without considering the residual stress is conducted. The result shows that the interior stress considering residual stress is much higher than that without considering residual stress. To verify the simulation accuracy of these two cases, the high-stress area locations in the simulation results are compared with the damage locations in physical bending fatigue test. The result illustrates that the simulation result considering the residual stress accords with the experimental result better. Therefore, the simulation result of the residual stress is reasonable, and it is necessary to consider residual stress in the simulation of the LGFT wheel.


1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


1996 ◽  
Vol 118 (2) ◽  
pp. 217-223 ◽  
Author(s):  
K. J. Kang ◽  
S. Y. Seol

A method which we describe as the “successive cracking method” for measuring residual stresses in a circular ring is presented. In this method, the residual stresses are evaluated using a fracture mechanics approach. The strains measured at a point on the outer edge of the ring as a crack is introduced and extended from the edge are used to deduce the residual stress distribution in the uncracked ring. Finite element analysis is carried out to examine the validity of the theoretical derivation. Experiments to measure the residual stresses in a steel ring specimen are done by the successive cracking method. For comparison purposes, the experimental results using the sectioning method are presented as well. The successive cracking method is shown to be valid, simple, and effective for measuring the two-dimensional residual stress distribution in an axisymmetric member.


2013 ◽  
Vol 768-769 ◽  
pp. 79-86 ◽  
Author(s):  
Horst Brünnet ◽  
Dirk Bähre ◽  
Theo J. Rickert ◽  
Dominik Dapprich

The incremental hole-drilling method is a well-known mechanical measurement procedure for the analysis of residual stresses. The newly developed PRISM® technology by Stresstech Group measures stress relaxation optically using electronic speckle pattern interferometry (ESPI). In case of autofrettaged components, the large amount of compressive residual stresses and the radius of the pressurized bores can be challenging for the measurement system. This research discusses the applicability of the measurement principle for autofrettaged cylinders made of steel AISI 4140. The residual stresses are measured after AF and after subsequent boring and reaming. The experimental residual stress depth profiles are compared to numerically acquired results from a finite element analysis (FEA) with the software code ABAQUS. Sample preparation will be considered as the parts have to be sectioned in half in order to access the measurement position. Following this, the influence of the boring and reaming operation on the final residual stress distribution as well as the accuracy of the presented measurement setup will be discussed. Finally, the usability of the FEA method in early design stages is discussed in order to predict the final residual stress distribution after AF and a following post-machining operation.


1993 ◽  
Vol 60 (2) ◽  
pp. 300-309 ◽  
Author(s):  
T. Nishimura

New equations for calculating residual stress distribution are derived from the theory of elasticity for tubes. The initial distribution of the stresses including the shearing stress is computed from longitudinal distributions of residual stresses measured by the X-ray methods at the surface after removal of successive concentric layers of material. For example, the residual stresses of a steel tube quenched in water were measured by the X-ray diffraction method. The new method was also applied to a short tube with hypothetical residual stress distribution. An alternative finite element analysis was made for a verification. The residual stresses computed by finite element modeling agreed well with the hypothetical residual stresses measured. This shows that good results can be expected from the new method. The equations can also be used for bars by simple modification.


2009 ◽  
Vol 417-418 ◽  
pp. 937-940
Author(s):  
Li Li ◽  
Ren Fu Wang ◽  
Gang Xue ◽  
Xiang Jun Min

The pipe-plate welding is a common type of joint in almost all industries. However the presence of residual stresses can be detrimental to the performance of the welded product. Therefore a good method for accurate estimation of the welding residual stress is needed. In this paper, three-dimensional finite element analysis is carried out to simulate pipe-plate structure. Based on the ANSYS software, the residual stress distribution of the pipe-plate structure during welding and after welding is predicted. The calculation results show that the residual stress of weld bead is higher than other places. The radial stress, hoop stress and axial stress are not significantly sensitive to the angle.


Sign in / Sign up

Export Citation Format

Share Document