scholarly journals Approach for Selection of Rayleigh Damping Parameters Used for Time History Analysis

Author(s):  
R. E. Spears ◽  
S. R. Jensen

Nonlinearities, whether geometric or material, need to be addressed in seismic analysis. One good analysis method that can address these nonlinearities is direct time integration with Rayleigh damping. Modal damping is the damping typically specified in seismic analysis Codes and Standards [1, 2]. Modal damping is constant for all frequencies where Rayleigh damping varies with frequency. An approach is proposed here for selection of Rayleigh damping coefficients to be used in seismic analyses that are consistent with given Modal damping. The approach uses the difference between the modal damping response and the Rayleigh damping response along with effective mass properties of the model being evaluated to match overall system response levels. This paper provides a simple example problem to demonstrate the approach. It also provides results for a finite element model representing an existing piping system. Displacement, acceleration, and stress results are compared from model runs using modal damping and model runs using Rayleigh damping with coefficients selected using the proposed method.

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
R. E. Spears ◽  
S. R. Jensen

Nonlinearities, whether geometric or material, need to be addressed in seismic analysis. One good analysis method that can address these nonlinearities is direct time integration with Rayleigh damping. Modal damping is the damping typically specified in seismic analysis Codes and Standards (ASCE 4-98, 1998, “Seismic Analysis of Safety-Related Nuclear Structures and Commentary,” American Society of Civil Engineers, Reston, Virginia and ASCE/SEI 43-05, 2005, “Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities,” American Society of Civil Engineers, Reston, Virginia.). Modal damping is constant for all frequencies where Rayleigh damping varies with frequency. An approach is proposed here for selection of Rayleigh damping coefficients to be used in seismic analyses that is consistent with given modal damping. The approach uses the difference between the modal damping response and the Rayleigh damping response along with effective mass properties of the model being evaluated to match overall system response levels. This paper provides a simple example problem to demonstrate the approach. It also provides results for a finite element model representing an existing piping system. Displacement, acceleration, and stress results are compared from model runs using modal damping and model runs using Rayleigh damping with coefficients selected using the proposed method.


Author(s):  
Soon Myeon Wang ◽  
J. S. Kim ◽  
T. E. Jin ◽  
M. J. Jhung ◽  
Y. H. Choi ◽  
...  

The structural integrity of integral reactor assembly of 65Mwt thermal capacity is assessed by using the commercial finite element package ANSYS in order to evaluate the seismic safety margin. First of all, the modal analyses are performed using the various analysis models with/without the fluid coupling effect in order to validate a super element model and to evaluate the coupling effect on natural frequency. Based on the modal analysis results, the seismic analyses are performed using the ground response spectrum defined in Reg. Guide 1.60. Finally, time-history analyses are performed using the modal analysis results, the super element model and an inertia load approach. As a result, the reliable and efficient seismic analysis model for an integral reactor assembly is developed and it is found that an integral reactor assembly has the sufficient seismic safety margin.


Author(s):  
Dae Soo Kim ◽  
Joon Ho Lee ◽  
In Yeung Kim

The steam supply piping connected to the high pressure (HP) turbine of APR1400 (Korea’s advanced power plant 1400 MW-class) is a typical example of multi-supported piping system, and it is routed from the Containment building to the Turbine building via the Main Steam Isolation Valve House in the Auxiliary building. In the seismic analysis of this piping system, using the Enveloped Response Spectrum (ERS) method, a commonly used methodology for seismic analysis of nuclear power plant piping in industry circles, generates overly conservative analysis results. Therefore, Time History Method (THM) which applies excitation characteristic of each support attached to individual building was used to eliminate unnecessary conservatism. However, it was noticed that the Time History Method requires considerable amount of labor and time in generating combined time history equivalent to the spectrum applied for each support although it is regarded as the most exact and realistic method for seismic analysis. The nuclear industry has been making lots of efforts in finding out the mathematic logicality and practical applicability to resolve this issue. This paper deals with parametric research on combination effects of responses between support groups, damping effects, and modal combination method with close modes in applying the Independent Support Motion (ISM) method to the analysis model of the steam supply piping connected to the high pressure turbine of APR1400. Quantitative assessment and comparison with the analysis results of the ERS method and THM were also carried out. As a result, it is shown that the analysis results of the ISM method together with the SRSS combination between support groups, 4% damping with ±15% spectrum peak broadening and grouping of modal combination are remarkably similar to those of THM.


Author(s):  
Abhinav Gupta

This paper presents results from some of the recent studies on seismic analysis of multiply supported piping systems. The seismic responses for an actual feedwater piping system as evaluated from the conventional uncoupled analysis are compared with those obtained from an analysis of the coupled building-piping system. A discussion is also presented on the significance of non-classical damping in such analyses. It is illustrated that the composite modal damping is just another form of classical damping. Consideration of composite modal damping in a coupled analysis can give inaccurate piping responses when the modes of uncoupled systems are nearly tuned. In such systems, the effect of nonclassical damping is quite significant. Since the floor spectra are neither generated nor required in a coupled systems analysis, methods like peak broadening or peak shifting cannot be used directly to account for the effect of uncertainties. Formulations are presented to evaluate the design response from a coupled system analysis by considering the effect of uncertainties in modal properties of uncoupled systems.


Author(s):  
Akira Saito ◽  
Matthew P. Castanier ◽  
Christophe Pierre

An efficient methodology for predicting the nonlinear forced vibration response of a turbine engine rotor with a cracked blade is presented and used to investigate the effects of the damage on the forced response. The effects of small, random blade-to-blade differences (mistuning) and rotation on the forced response are also considered. Starting with a finite element model, a hybrid-interface method of Component Mode Synthesis (CMS) is employed to generate a reduced-order model (ROM). The crack surfaces are retained as physical degrees of freedom in the ROM so that the forces due to contact interaction in three-dimensional space can be properly calculated. The resulting nonlinear equations of steady-state motion are solved by applying an alternating frequency/time-domain method, which is much more computationally efficient than traditional time integration. Using this reduced-order modeling and analysis framework, the effects of the cracked blade on the system response are investigated for various mistuning levels and rotation speeds. First, the advantages of the selected hybrid-interface CMS method are discussed and demonstrated. Then, the resonant frequency shift associated with the stiffness loss due to the crack, as well as vibration localization about the cracked blade are thoroughly investigated. In addition, the results of the nonlinear ROMs are compared to those obtained with linear ROMs as well as blade-alone ROMs. It is shown that several key system vibration characteristics are not captured by the simpler models, but that some insight into the system response can be gained from the blade-alone response predictions. Furthermore, it is demonstrated that while the effects of the crack often appear similar those of mistuning, differences between the effects of mistuning and damage can be discerned by observing and comparing the response across different families of system modes.


Author(s):  
Nima Zobeiry

It is understood that the level of seismic damping in a piping system is strongly influenced by the supports. Put differently, the supports contribute to an effective damping that can be considered in the seismic analysis of the piping system. This paper investigates the issue for the feeder pipes of a CANDU™ reactor. Feeders are numerous class I pipes in parallel, which are separated by frictional spacer elements. The results of a time history analysis, taking into account different damping mechanisms, are compared to those from a response spectrum analysis to deduce the effective damping in the system. The sensitivity of the effective damping to different parameters, such as the coefficient of friction and the input frequency content, is investigated.


2005 ◽  
Vol 21 (3) ◽  
pp. 685-713 ◽  
Author(s):  
Iunio Iervolino ◽  
C. Allin Cornell

This study addresses the question of selection and amplitude scaling of accelerograms for predicting the nonlinear seismic response of structures. Despite the current practices of record selection according to a specific magnitude-distance scenario and scaling to a common level, neither aspect of this process has received significant research attention to ascertain the benefits or effects of these practices on the conclusions. This paper hypothesizes that neither these usual principal seismological characteristics nor scaling of records matters to the nonlinear response of structures. It then investigates under what conditions this hypothesis may not be sustainable. Two classes of records sets are compared in several case studies: one class is carefully chosen to represent a specific magnitude and distance scenario, the other is chosen randomly from a large catalog. Results of time-history analyses are formally compared by a simple statistical hypothesis test to assess the difference, if any, between nonlinear demands of the two classes of records. The effect of the degree of scaling (by first-mode spectral acceleration level) is investigated in the same way. Results here show (1) little evidence to support the need for a careful site-specific process of record selection by magnitude and distance, and (2) that concern over scenario-to-scenario record scaling, at least within the limits tested, may not be justified.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Akira Saito ◽  
Matthew P. Castanier ◽  
Christophe Pierre

An efficient methodology for predicting the nonlinear forced vibration response of a turbine engine rotor with a cracked blade is presented and used to investigate the effects of the damage on the forced response. The influence of small random blade-to-blade differences (mistuning) and rotation on the forced response are also considered. Starting with a finite element model, a hybrid-interface method of component mode synthesis (CMS) is employed to generate a reduced-order model (ROM). The crack surfaces are retained as physical degrees of freedom in the ROM so that the forces due to contact in three-dimensional space can be properly calculated. The resulting nonlinear equations of steady-state motion are solved by applying an alternating frequency/time-domain method, which is much more computationally efficient than traditional time integration. Using this reduced-order modeling and analysis framework, the effects of the cracked blade on the system response of an example rotor are investigated for various mistuning levels and rotation speeds. First, the advantages of the selected hybrid-interface CMS method are discussed and demonstrated. Then, the resonant frequency shift associated with the stiffness loss due to the crack and the vibration localization about the cracked blade are thoroughly investigated. In addition, the results of the nonlinear ROMs are compared with those obtained with linear ROMs, as well as blade-alone ROMs. It is shown that several key system vibration characteristics are not captured by the simpler models, but that some insight into the system response can be gained from the blade-alone response predictions. Furthermore, it is demonstrated that while the effects of the crack often appear similar to those of mistuning, the effects of mistuning and damage can be distinguished by observing and comparing the response across multiple families of system modes.


2012 ◽  
Vol 594-597 ◽  
pp. 1532-1536
Author(s):  
Yun Zhang ◽  
Xiu Feng Huang ◽  
Bei Li

Take one long span double-curved arch bridge as the example, built the finite element model of bridge structure and analyzed the modeling method, dynamic features and response under ground motion. It demonstrates that response spectrum method could meet the calculation requirement in seismic analysis of the double-curved arch bridge, and the result accords with time-history analysis method. Bridge vibration type is dispersing in quality distribution of double-curved arch bridge; it should take adequate vibration types in bridge combination. At frequent earthquake, it is actual to considerate the coalition function between arch crown structure and the main arch ring. But at rare earthquake, the arch crown buildings of masonry structure is easy to be damaged, it is not suitable to considerate the coalition function in bridge reinforcement.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032043
Author(s):  
Iacopo Costoli ◽  
Stefano Sorace ◽  
Gloria Terenzi

Abstract Observation of damage caused by recent earthquakes highlights, once again, that the presence of infills significantly affects the seismic response of reinforced concrete (R.C.) frame buildings. Therefore, in spite of the fact that infills are non-structural elements, and thus they are normally not considered in structural analyses, in many cases their contribution should not be neglected. Based on these observations, the study proposed in this paper consists in the evaluation of the seismic response of infills in time-history finite element analyses of R.C. frame structures by means of a two-element model, constituted by two diagonal nonlinear beams. A “concrete”-type hysteretic model predicts the in-plane state of infills, through a force-displacement backbone curve expressly generated, and scanned in terms of performance limits, to this aim. This model is demonstratively applied to a real case study, i.e. a R.C. frame building including various types of brick masonry perimeter infills and internal partitions, damaged by the 30 October 2016 Central Italy earthquake. The time-histories seismic analyses carried out on it allows checking the influence of infills on the response of the structure, as well the effectiveness of the proposed model in reproducing the observed real damage on the masonry panels.


Sign in / Sign up

Export Citation Format

Share Document