Seismic Performance Analysis of the Large Spherical Tank

Author(s):  
Zhirong Yang ◽  
Dayong Zhang ◽  
Longwei Guo ◽  
Baibing Yang ◽  
Guodong Wang

The seismic safety problem of the spherical tank under seismic load has become one important subject in seismic research of special equipment. Based on the ANSYS finite element software, typical spherical tank mechanics model is established first of all, through precise time history response analysis under the seismic excitation to determine the significant location of the stress. Then, the seismic performance impact of the support structure design parameters is analyzed. Finally, the seismic performance of all kinds of spherical tank, such as the large, medium and small tank, is determined. This paper provides a reasonable basis for the anti-seismic safety security and design of the spherical tank.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2077 ◽  
Author(s):  
Shinyoung Kwag ◽  
Jinsung Kwak ◽  
Hwanho Lee ◽  
Jinho Oh ◽  
Gyeong-Hoi Koo

In a nuclear power plant, it is essential to improve the seismic safety of the piping system for the coolant transfer to cool the high temperature caused by the nuclear reaction. Under this background, this study makes two major contributions. The first is that though tuned mass dampers (TMDs) were originally used only to reduce the vibration of piping itself, through this research, it was first proved that it had a positive effect on the improvement of the seismic performance of nuclear piping systems. Additionally, this study proposed a design approach that effectively obtains the optimal design values of TMDs associated with seismic performance. In order to effectively derive the TMD optimum design values, we not only utilized the existing TMD optimum design formula, but also additionally proposed a frequency response analysis-based TMD optimal design method. As a result, it was seen that primary responses of system were significantly reduced under the input seismic load due to the use of TMDs for the piping system. It was also confirmed that the use of the existing TMD formula brought about a similar degree of response reduction effect, while it was possible to get the improved effect when using the proposed method.


2014 ◽  
Vol 580-583 ◽  
pp. 1704-1707
Author(s):  
Yu Lin Deng ◽  
Yu Bian ◽  
Fan Lei

Submarine pipelines are described as the lifeblood of offshore oil and it is crucial to ensure the seismic safety of the submarine pipelines. Based on the fluid-structure interaction numerical analysis method and by using finite element software ADINA, the analysis models of the free long-span submarine flexible pipelines under earthquakes were established. By employing dynamic time-history method, the influences of fluid-structure interaction on the seismic response of the submarine pipelines were researched. The results showed that the peak normal stress and the peak displacement of submarine pipelines’ mid-span considering the influences of the fluid-structure interaction are greater than those without considering the influences, and the influences of the fluid-structure interaction on the seismic response of the submarine pipelines will increase with the increase of the submarine pipelines‘ diameter.


2010 ◽  
Vol 163-167 ◽  
pp. 318-322
Author(s):  
Wen Xia Luo ◽  
Jin Song Lei ◽  
Ying Hu

The seismic performance of braced steel frame was simulated by the finite element software ANSYS based on the passive energy-dissipation under the low-cycle repeated load and the time-history analysis under seismic load for the energy-dissipation braced steel frame structure, no-brace steel frame structure, and conventional braced frame structure. The energy dissipation and seismic performance of three kinds of frame were compared, the results show that the energy-dissipation braced structure can produce strong energy-dissipation control force to enhance energy dissipation capacity of the whole structure significantly, and weaken the seismic load of the main frame. It follows that the energy-dissipation braced steel frame can achieve the purpose of energy dissipation for structure, and has good seismic performance.


Author(s):  
Zhongming Ma ◽  
Guang Xiao ◽  
Minghui Zhang ◽  
Haijun Zhang ◽  
Ruixue Du

Abstract Spherical tank is an important storage equipment in petrochemical industry. It is often used to store inflammable and explosive materials. Once it is damaged in the earthquake, it will lead to serious consequences. In this paper, the finite element model of spherical tank is established by ANSYS software. The bottom shear method, mode decomposition method and time history analysis method are used to calculate the strength of spherical tank. The weakest link of the structure under the real earthquake load is determined, which provides the basis for the seismic safety guarantee and structural design of spherical tank. The applicability of the three calculation methods is compared and discussed.


Author(s):  
R. D. Sharpe

Internationally, the seismic resistance of large industrial boilers appears to be addressed by the most simple application of relatively low equivalent static lateral forces which are resisted elastically. This paper describes measures taken to ensure a predictable
and controlled seismic performance of such a boiler
during a major earthquake. Inelastic time-history methods of analysis were used to confirm that the desired performance would be achieved. As a result the client was able to purchase a relatively standard boiler in the international marketplace and still achieve a level of seismic resistance consistent with the best NZ practices.


2014 ◽  
Vol 912-914 ◽  
pp. 1534-1537
Author(s):  
Shao Bo Zhang ◽  
Ke Lun Wei ◽  
Bi Jian Xiao

This paper adopts large finite element software ANSYS to establish finite element model of twin-tower building with enlarged base, uses dynamic time history analysis method for seismic response calculation, compare and analyze the calculation results of twin-tower building with enlarged base under elastic boundary conditions and rigid boundary conditions. The results showe that dynamic response for model under elastic boundary conditions is larger than dynamic response for model under rigid boundary conditions, and elastic boundary conditions is more close to the actual situation.


2014 ◽  
Vol 986-987 ◽  
pp. 887-890 ◽  
Author(s):  
Xiang Sun ◽  
Zong Zhi Yang ◽  
Yun Gang Liu ◽  
Mai Quan Zhang ◽  
Yuan Fei Zhu

Impact load of perforation will result in strong vibration of downhole string, string operated such as bending fracture accidents. Considering the clearance between string and casing, using space beam and spring element to solve the nonlinear contact problems between oil jacket, established the numerical model of string structure dynamic response analysis in horizontal well. Extracting downhole perforation pressure wave monitoring data, using the finite element software ANSYS, analyzed the dynamic response of the tubing under perforation of detonation shock wave impact, got the displacement of the tubing、acceleration time history. The results show that, without packer, the maximum Mises equivalent stress in the end of the string, the deformation and stress changes in deflecting section of the tubing string are bigger than in vertical Wells.


2011 ◽  
Vol 250-253 ◽  
pp. 3305-3308
Author(s):  
Yong Yao ◽  
Yun Peng Chu ◽  
Li Wang ◽  
Rui Zhao

Cold-formed steel structure is suitable for post-earthquake reconstruction since its good seismic performance and construction speed. Analyzing the dynamic characteristic of a two story office building by using the finite element software ANSYS. And the results show that: (1) in the time history analysis based on three types of seismic waves the lateral displacement of the structure and rotation between layers to meet the relevant specifications when confront the rare earthquake (2) Under the seismic loads, earthquake response acceleration amplification factor is smaller which indicating better seismic performance and it can be used in areas with high seismic intensity.


2014 ◽  
Vol 501-504 ◽  
pp. 1493-1497
Author(s):  
Shu He Wang ◽  
Ji Yuan ◽  
Rui Guo Ma ◽  
Ju Bing Zhang

According to No.3 dam section of Dahuaqiao gravity dam, a three-dimensional finite element model is built by finite element software ANSYS. Mechanics of materials method, response spectrum method and time history analysis method are employed to analyze the strength of the dam section. Results show that the stress of dam toe, dam heel and downstream fold slope are relatively high and stress concentration emerges in those positions. The phenomenon indicates that these areas are vulnerable under the earthquake and precautions must be taken. But under the designed earthquake, the maximum stress of the dam section is below the allowable stress, representing the dam is in a safe state and the strength requirement is satisfied.


2015 ◽  
Vol 799-800 ◽  
pp. 746-750
Author(s):  
Ai Min Gong ◽  
Hai Yan Huang ◽  
Hui Ying Zhang

A finite element model of tailiings dam was used to analyze the dynamic responses of the stress field, displacement and acceleration of the dam with the dynamic time-history response analysis method in this paper. The time-history curves of different responses were obtained. And an evaluation for dynamic stability of the tailings dam was also discussed. The analysis result shows that this case can provide a certain reference value for the dynamic calculation and the dynamic stability analysis of tailings dam under seismic load.


Sign in / Sign up

Export Citation Format

Share Document