Effects of External and Internal Hydrogen on Tensile Properties of Austenitic Stainless Steels Containing Additive Elements

Author(s):  
Hisatake Itoga ◽  
Hisao Matsunaga ◽  
Junichiro Yamabe ◽  
Saburo Matsuoka

Effect of hydrogen on the slow strain rate tensile (SSRT) properties of five types of austenitic stainless steels, which contain small amounts of additive elements (e.g., nitrogen, niobium, vanadium and titanium), was studied. Some specimens were charged by exposing them to 100 MPa hydrogen gas at 543 K for 200 hours. The SSRT tests were carried out under various combinations of specimens and test atmospheres as follows: (i) non-charged specimens tested in air at room temperature (RT), (ii) non-charged specimens tested in 0.1 MPa nitrogen gas at 193 K, (iii) hydrogen-charged specimens tested in air at RT, (iv) hydrogen-charged specimens tested in 0.1 MPa nitrogen gas at 193 K, and (v) non-charged specimens tested in 115 MPa hydrogen gas at RT. In the tests without hydrogen (i.e., cases (i) and (ii)), the reduction of area (RA) was nearly constant in all the materials, regardless of test temperature. In contrast, in the tests of internal hydrogen (cases (iii) and (iv)), RA was much smaller at 193 K than at RT in all the materials. It was revealed that the susceptibility of the materials to hydrogen embrittlement (HE) can successfully be estimated in terms of the nickel equivalent, which represents the stability of austenite phase. The result suggested that the nickel equivalent can be used for evaluating the material compatibility of austenitic stainless steels for hydrogen service.

Author(s):  
Hisatake Itoga ◽  
Takashi Matsuo ◽  
Akihiro Orita ◽  
Hisao Matsunaga ◽  
Saburo Matsuoka ◽  
...  

Slow strain rate tests (SSRTs) were performed with two types of high-strength austenitic stainless steels, Types AH and BX, as well as with two types of conventional austenitic stainless steels, Types 304 and 316L. The tests used the following combinations of specimen types and test atmospheres: (i) non-charged specimens tested in air, (ii) hydrogen-charged specimens tested in air (tests for internal hydrogen), and (iii) non-charged specimens tested in hydrogen gas at pressures of 78 ∼ 115 MPa (tests for external hydrogen). Type 304 exhibited a marked reduction of ductility in the tests for both internal hydrogen and external hydrogen, whereas Types AH, BX and 316L exhibited little or no degradation. In addition, fatigue crack growth (FCG) tests for the four types of steels were also carried out in air and hydrogen gas at pressures of 100 ∼ 115 MPa. In Type 304, FCG in hydrogen gas was more than 10 times as fast as that in air, whereas the acceleration rate remained within 1.5 ∼ 3 times in Types AH, BX and 316L. It was presumed that, in Types AH and BX, a small amount of additive elements, e.g. nitrogen and niobium, increased the strength as well as the stability of the austenitic phase, which thereby led to the excellent resistance against hydrogen.


2014 ◽  
Vol 891-892 ◽  
pp. 891-896 ◽  
Author(s):  
Ryosuke Komoda ◽  
Naoto Yoshigai ◽  
Masanobu Kubota ◽  
Jader Furtado

Fretting fatigue is one of the major factors in the design of hydrogen equipment. The effect of internal hydrogen on the fretting fatigue strength of austenitic stainless steels was studied. The internal hydrogen reduced the fretting fatigue strength. The reduction in the fretting fatigue strength became more significant with an increase in the hydrogen content. The reason for this reduction is that the internal hydrogen assisted the crack initiation. When the fretting fatigue test of the hydrogen-charged material was carried out in hydrogen gas, the fretting fatigue strength was the lowest. Internal hydrogen and gaseous hydrogen synergistically induced the reduction in the fretting fatigue strength of the austenitic stainless steels. In the gaseous hydrogen, fretting creates adhesion between contacting surfaces where severe plastic deformation occurs. The internal hydrogen is activated at the adhered part by the plastic deformation which results in further reduction of the crack initiation limit.


2004 ◽  
Vol 449-452 ◽  
pp. 1085-1088
Author(s):  
Daisuke Kuroda ◽  
Takao Hanawa ◽  
Takaaki Hibaru ◽  
Syuji Kuroda ◽  
Masaki Kobayashi ◽  
...  

Ingots of ferritic stainless steels, Fe-24Cr and Fe-24Cr-2Mo in mass%, were worked to various dimensions for test specimens. Nitrogen was absorbed by the specimens in a furnace filled with nitrogen gas with a pressure of 101.3 kPa at 1473 K to develop a simple and convenient manufacturing process of nickel-free austenitic stainless steels. Ferritic Fe-24Cr and Fe-24Cr-2Mo were austenitized with nitrogen absorption to a 2-mm depth from the surface. The hardness, tensile strength, 0.2% proof stress, and elongation to fracture increased, and the reduction of area decreased in the alloys by austenitization due to nitrogen absorption. The tensile strength and 0.2% proof stress of these alloys with nitrogen absorption for 129.6 ks were much larger than those of 316L steel, while the elongation to fracture was much smaller than that of 316L steel. Therefore, small devices and parts with a maximum thickness or diameter of 4 mm were manufactured with this process in this study


Author(s):  
Osamu Takakuwa ◽  
Junichiro Yamabe ◽  
Hisao Matsunaga ◽  
Yoshiyuki Furuya ◽  
Saburo Matsuoka

Slow-strain rate tensile (SSRT) tests on various metals having γ-Fe phase; Type 304 and 316L stainless steels, HP160 high strength stainless steel, and A286 Fe-based super alloy were conducted in external hydrogen and with internal hydrogen. The external hydrogen indicates non-charged specimens tested in high-pressure hydrogen-gas environment, whereas the internal hydrogen indicates hydrogen-charged specimens, with uniform distribution of hydrogen, tested in inert gas. The hydrogen distribution was calculated based on the measured hydrogen diffusivity and solubility. The fracture morphologies were observed by scanning electron microscopy (SEM). For Types 304, 316L, and HP160, the relative reduction in area (RRA) of the steels was successfully reproduced by the nickel equivalent, Nieq, showing the higher Nieq, the lager RRA. Furthermore, at a low Nieq, the RRA of the steel with external hydrogen was nearly equal to that with internal hydrogen. In contrast, at a high Nieq, the RRA of the steel with internal hydrogen was slightly degraded by hydrogen, RRA ≈ 0.8, whereas that in external hydrogen was not degraded, RRA ≈ 1. For A286, despite a high Nieq, the RRA of the alloy with internal hydrogen was significantly degraded by hydrogen, RRA ≈ 0.5. The fracture morphologies were categorized into four types: quasi-cleavage fracture associated with hydrogen-assisted surface cracks; ordinary void formation with no hydrogen effect; small-void formation associated with void sheet enhanced by hydrogen; facet formation induced by hydrogen. These categorized morphologies could be interpreted in terms of hydrogen distribution (internal or external hydrogen), austenitic stability (a low or high Nieq), and microstructure (solution or precipitation-hardened treatment).


Author(s):  
Hyung-Seop Shin ◽  
Juho Yeo ◽  
Nick A. Custodio ◽  
Un-Bong Baek ◽  
Seung-Hoon Nahm

Abstract Recently, a simple screening technique based on the quantitative evaluation of the hydrogen embrittlement (HE) sensitivity of the metallic materials using an in-situ small-punch (SP) test method was developed by the author group. The in-situ SP test can be easily carried out even under a high-pressure hydrogen gas environment. It makes possible to investigate the HE behaviors of metallic materials quantitatively adopting as a characterizing performance factor of the relative reduction of thickness (RRT) measured at the fractured parts of specimen after SP tests. In this paper, the application of the newly established in-situ SP test method for the hydrogen compatibility screening of austenitic stainless steels was performed at room and low temperatures. The influence of punch velocity on RRT of the HE sensitivity was examined for various austenitic stainless steels. Their HE sensitivities were evaluated quantitatively using RRT and checked by comparing to a factor, the relative reduction of area (RRA) obtained by SSRT tests.


2008 ◽  
Vol 56 (14) ◽  
pp. 3414-3421 ◽  
Author(s):  
Lin Zhang ◽  
Mao Wen ◽  
Masaaki Imade ◽  
Seiji Fukuyama ◽  
Kiyoshi Yokogawa

Author(s):  
Xaver Schuler ◽  
Karl-Heinz Herter ◽  
Jürgen Rudolph

Titanium and niobium stabilized austenitic stainless steels X6CrNiTi18-10S (material number 1.4541, correspondent to Alloy 321) respectively X6CrNiNb18-10S (material number 1.4550, correspondent to Alloy 347) are widely applied materials in German nuclear power plant components. Related requirements are defined in Nuclear Safety Standard KTA 3201.1. Fatigue design analysis is based on Nuclear Safety Standard KTA 3201.2. The fatigue design curve for austenitic stainless steels in the current valid edition of KTA 3201.2 is essentially identical with the design curve included in ASME-BPVC III, App I (ed. 2007, add. July 2008 respectively back editions). In the current code revision activities of KTA 3201.2 the compatibility of latest in air fatigue data for austenitic stainless steels with the above mentioned grades were examined in detail. The examinations were based on statistical evaluations of 149 strain controlled test data at room temperature and 129 data at elevated temperatures to derive best-fit mean data curves. Results of two additional load controlled test series (at room temperature and 288°C) in the high cycle regime were used to determine a technical endurance limit at 107 cycles. The related strain amplitudes were determined by consideration of the cyclic stress strain curve. The available fatigue data for the two austenitic materials at room temperature and elevated temperatures showed a clear temperature dependence in the high cycle regime demanding for two different best-fit curves. The correlation of the technical endurance limit(s) at room temperature and elevated temperatures with the ultimate strength of the materials is discussed. Design fatigue curves were derived by application of the well known factors to the best-fit curves. A factor of SN = 12 was applied to load cycles correspondent to the NUREG/CR-6909 approach covering influences of data scatter, surface roughness, size and sequence. In terms of strain respectively stress amplitudes in the high cycle regime, for elevated temperatures (>80°C) a factor of Sσ = 1.79 was applied considering and combining in detail the partial influences of data scatter surface roughness, size and mean stress. For room temperature a factor of Sσ = 1.88 shall be applied. As a result, new design fatigue curves for austenitic stainless steel grades 1.4541 and 1.4550 will be available within the German Nuclear Safety Standard KTA 3201.2. The fatigue design rules for all other austenitic stainless steel grades will be based on the new ASME-BPVC III, App I (ed. 2010) design curve.


Author(s):  
Seiji Fukuyama ◽  
Masaaki Imade ◽  
Kiyoshi Yokogawa

A new type of apparatus for material testing in high-pressure gas of up to 100 MPa was developed. The apparatus consists of a pressure vessel and a high-pressure control system that applies the controlled pressure to the pressure vessel. A piston is installed inside a cylinder in the pressure vessel, and a specimen is connected to the lower part of the piston. The load is caused by the pressure difference between the upper room and the lower room separated by the piston, which can be controlled to a loading mode by the pressure valves of the high-pressure system supplying gas to the vessel. Hydrogen gas embrittlement (HGE) and internal reversible hydrogen embrittlement (IRHE) of austenitic stainless steels and iron- and nickel-based superalloys used for high-pressure hydrogen storage of fuel cell vehicle were evaluated by conducting tensile tests in 70 MPa hydrogen. Although the HGE of these metals depended on modified Ni equivalent, the IRHE did not. The HGE of austenitic stainless steels was larger than their IRHE; however, the HGE of superalloys was not always larger than their IRHE. The effects of the chemical composition and metallic structure of these materials on the HGE and IRHE were discussed. The HGE of austenitic stainless steels was examined in 105 MPa hydrogen. The following were identified; SUS304: HGE in stage II, solution-annealed SUS316: HGE in stage III, sensitized SUS316: HGE in stage II, SUS316L: HGE in FS, SUS316LN: HGE in stage III and SUS310S: no HGE.


Author(s):  
Hiroshi Kanasaki ◽  
Makoto Higuchi ◽  
Seiji Asada ◽  
Munehiro Yasuda ◽  
Takehiko Sera

Fatigue life equations for carbon & low-alloy steels and also austenitic stainless steels are proposed as a function of their tensile strength based on large number of fatigue data tested in air at RT to high temperature. The proposed equations give a very good estimation of fatigue life for the steels of varying tensile strength. These results indicate that the current design fatigue curves may be overly conservative at the tensile strength level of 550 MPa for carbon & low-alloy steels. As for austenitic stainless steels, the proposed fatigue life equation is applicable at room temperature to 430 °C and gives more accurate prediction compared to the previously proposed equation which is not function of temperature and tensile strength.


Sign in / Sign up

Export Citation Format

Share Document