Computational Investigation of Composite Repair Materials Preventive Effects on Wrinkle Bends Fatigue Failure

Author(s):  
Mahdi Kiani ◽  
Timothy Mally ◽  
Roger Walker ◽  
Eric Locke

Wrinkle bending was a vintage technique in pipeline construction for aligning pipe sections. However, this process causes severe geometry changes over the pipeline structure and thus stress concentrations are developed. These stress concentrations have the potential to cause catastrophic pipeline failure due to internal pressure cycles, seismic effects and temperature changes. Different techniques have been studied and examined to mitigate the destructive effects that wrinkle bends pose to pipeline integrity. Composite repair methods and materials have been proven as one of the most reliable and efficient technologies to repair different pipeline defects. Designing an economical composite repair for a wrinkled pipe with proper performance requires precise design considerations. Finding an economical balance can be achieved multiple ways, such as performing experimental tests or applying analytical formulas and procedures. Each of these two methods has its own drawbacks: cost, errors and time can prevent accurate experimental tests and poor accuracy. Applicability of suggested analytical design equations can render certain analyses useless. To technically and economically improve the design and application processes of composite repair systems for wrinkle bends, elastic finite element analysis (FEA) was performed. The FEA analysis was conducted to study the effects of applying composite repairs on the elastic stress concentration factor of the wrinkle section of a Grade X52 carbon steel pipe. Moreover, a nonlinear kinematic hardening material model was developed and calibrated for this same steel. An elastic-plastic FEA was implemented to evaluate the stress-strain response of a wrinkled pipe subjected to a cyclic bending loading and constant internal pressure. Different strain based fatigue life estimation approaches were used to estimate the fatigue life enhancement achieved by utilizing a proprietary composite repair installation method.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Mahdi Kiani ◽  
Roger Walker ◽  
Saman Babaeidarabad

One of the most important components in the hydraulic fracturing is a type of positive-displacement-reciprocating-pumps known as a fracture pump. The fluid end module of the pump is prone to failure due to unconventional drilling impacts of the fracking. The basis of the fluid end module can be attributed to cross bores. Stress concentration locations appear at the bores intersections and as a result of cyclic pressures failures occur. Autofrettage is one of the common technologies to enhance the fatigue resistance of the fluid end module through imposing the compressive residual stresses. However, evaluating the stress–strain evolution during the autofrettage and approximating the residual stresses are vital factors. Fluid end module geometry is complex and there is no straightforward analytical solution for prediction of the residual stresses induced by autofrettage. Finite element analysis (FEA) can be applied to simulate the autofrettage and investigate the stress–strain evolution and residual stress fields. Therefore, a nonlinear kinematic hardening material model was developed and calibrated to simulate the autofrettage process on a typical commercial triplex fluid end module. Moreover, the results were compared to a linear kinematic hardening model and a 6–12% difference between two models was observed for compressive residual hoop stress at different cross bore corners. However, implementing nonlinear FEA for solving the complicated problems is computationally expensive and time-consuming. Thus, the comparison between nonlinear FEA and a proposed analytical formula based on the notch strain analysis for a cross bore was performed and the accuracy of the analytical model was evaluated.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


2021 ◽  
Author(s):  
Charles R. Krouse ◽  
Grant O. Musgrove ◽  
Taewoan Kim ◽  
Seungmin Lee ◽  
Muhyoung Lee ◽  
...  

Abstract The Chaboche model is a well-validated non-linear kinematic hardening material model. This material model, like many models, depends on a set of material constants that must be calibrated for it to match the experimental data. Due to the challenge of calibrating these constants, the Chaboche model is often disregarded. The challenge with calibrating the Chaboche constants is that the most reliable method for doing the calibration is a brute force approach, which tests thousands of combinations of constants. Different sampling techniques and optimization schemes can be used to select different combinations of these constants, but ultimately, they all rely on iteratively selecting values and running simulations for each selected set. In the experience of the authors, such brute force methods require roughly 2,500 combinations to be evaluated in order to have confidence that a reasonable solution is found. This process is not efficient. It is time-intensive and labor-intensive. It requires long simulation times, and it requires significant effort to develop the accompanying scripts and algorithms that are used to iterate through combinations of constants and to calculate agreement. A better, more automated method exists for calibrating the Chaboche material constants. In this paper, the authors describe a more efficient, automated method for calibrating Chaboche constants. The method is validated by using it to calibrate Chaboche constants for an IN792 single-crystal material and a CM247 directionally-solidified material. The calibration results using the automated approach were compared to calibration results obtained using a brute force approach. It was determined that the automated method achieves agreeable results that are equivalent to, or supersede, results obtained using the conventional brute force method. After validating the method for cases that only consider a single material orientation, the automated method was extended to multiple off-axis calibrations. The Chaboche model that is available in commercial software, such as ANSYS, will only accept a single set of Chaboche constants for a given temperature. There is no published method for calibrating Chaboche constants that considers multiple material orientations. Therefore, the approach outlined in this paper was extended to include multiple material orientations in a single calibration scheme. The authors concluded that the automated approach can be used to successfully, accurately, and efficiently calibrate multiple material directions. The approach is especially well-suited when off-axis calibration must be considered concomitantly with longitudinal calibration. Overall, the automated Chaboche calibration method yielded results that agreed well with experimental data. Thus, the method can be used with confidence to efficiently and accurately calibrate the Chaboche non-linear kinematic hardening material model.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Sergei Alexandrov ◽  
Woncheol Jeong ◽  
Kwansoo Chung

Using Tresca's yield criterion and its associated flow rule, solutions are obtained for the stresses and strains when a thick-walled tube is subject to internal pressure and subsequent unloading. A bilinear hardening material model in which allowances are made for a Bauschinger effect is adopted. A variable elastic range and different rates under forward and reversed deformation are assumed. Prager's translation law is obtained as a particular case. The solutions are practically analytic. However, a numerical technique is necessary to solve transcendental equations. Conditions are expressed for which the release is purely elastic and elastic–plastic. The importance of verifying conditions under which the Tresca theory is valid is emphasized. Possible numerical difficulties with solving equations that express these conditions are highlighted. The effect of kinematic hardening law on the validity of the solutions found is demonstrated.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3460 ◽  
Author(s):  
Paweł J. Romanowicz ◽  
Bogdan Szybiński ◽  
Mateusz Wygoda

The paper presents the assessment of the possibility and reliability of the digital image correlation (DIC) system for engineering and scientific purposes. The studies were performed with the use of samples made of the three different materials—mild S235JR + N steel, microalloyed fine-grain S355MC steel, and high strength 41Cr4 steel subjected to different heat-treatment. The DIC studies were focused on determinations of dangerous zones with large stress concentrations, plastic deformation growth, and prediction of the failure zone. Experimental tests were carried out for samples with different notches (circular, square, and triangular openings). With the use of the DIC system and microstructure analyses, the influence of different factors (laser cutting, heat treatment, material type, notch shape, and manufacturing quality) on the material behavior were studied. For all studied cases, the stress concentration factors (SCF) were estimated with the use of the analytical formulation and the finite element analysis. It was observed that the theoretical models for calculations of the influence of the typical notches may result in not proper values of SCFs. Finally, the selected results of the total strain distributions were compared with FEM results, and good agreement was observed. All these allow the authors to conclude that the application of DIC with a common digital camera can be effectively applied for the analysis of the evolution of plastic zones and the damage detection for mild high-strength steels, as well as those normalized and quenched and tempered at higher temperatures.


2003 ◽  
Vol 125 (4) ◽  
pp. 299-303 ◽  
Author(s):  
Eyassu Woldesenbet

Analysis of polymer-matrix composite sucker rod systems using finite element methods is performed. Composite sucker rods used in oil production fail mainly due to fatigue loading. In majority of cases, the failure is in the region of the joint where the composite rod and the steel endfitting meet. 2D and 3D Finite Element Analysis and experimental tests are carried out in order to observe the stress distribution and to find the regions of stress concentrations inside the endfitting. The causes of failure of the composite sucker rods are identified as high transverse compressive stress caused by overloading that results in the crushing of the rod, and high stress concentrations present at the grooves of the endfitting that initiate premature cracks. Based on the result of this study, enhanced design of the composite sucker rod system can be accomplished.


Author(s):  
C. Hernandez ◽  
A. Maranon ◽  
I. A. Ashcroft ◽  
J. P. Casas-Rodriguez

Material characterization procedures are often complicated processes. In particular, dynamic material characterization usually requires many complicated and expensive tests. One of the tools used to characterize the behavior of materials under dynamic loading is the Taylor impact test. In this experiment, a flat-ended cylinder of initial uniform cross-sectional area is fired at a rigid target. The terminal geometry of the deformed cylinder is used to determine the material strength at different strain rates. This paper presents the formulation and solution of a first class inverse problem for the identification of the kinematic hardening material model from a Taylor impact test of a steel cylinder. The inverse problem is formulated as an optimization procedure for the determination of the optimal set of the model constants. The input parameter of the procedure is the final shape of a Taylor impact test specimen, in terms of central geometric moments, at a given impact velocity. The output parameters are the material model constants, which are determined by fitting the final shape of a numerically simulated Taylor specimen to the final shape of the experimental specimen. This optimization procedure is performed by a real-coded genetic algorithm. The paper includes a numerical example of the characterization procedure for a steel 1018 Taylor specimen of 8 mm diameter and 20 mm length, impacted at a velocity of 250 m/s. This simulation demonstrates the performance of the algorithm and the ability to estimate the kinematic hardening material model constants.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5141
Author(s):  
Edyta Bernatowska ◽  
Lucjan Ślęczka

This paper presents the results of experimental and numerical tests on angle members connected by one leg with a single row of bolts. This study was designed to determine which failure mode governs the resistance of such joints: net section rupture or block tearing rupture. Experimental tests were insufficient to completely identify the failure modes, and it was necessary to conduct numerical simulations. Finite element analysis of steel element resistance based on rupture required advanced material modelling, taking into account ductile initiation and propagation of fractures. This was realised using the Gurson–Tvergaard–Needleman porous material model, which allows for analysis of the joint across the full scope of its behaviour, from unloaded state to failure. Through experimental testing and numerical simulations, both failure mechanisms (net section and block tearing) were examined, and an approach to identify the failure mode was proposed. The obtained results provided experimental and numerical evidence to validate the strength function used in design standards. Finally, the obtained results of the load capacity were compared with the design procedures given in the Eurocode 3′s current and 2021 proposed editions.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Seung H. Yang ◽  
Kwang S. Woo ◽  
Jeong J. Kim ◽  
Jae S. Ahn

There are several techniques to simulate rebar reinforced concrete, such as smeared model, discrete model, embedded model, CLIS (constrained Lagrange in solid) model, and CBIS (constrained beam in solid) model. In this study, however, the interaction between the concrete elements and the reinforcement beam elements is only simulated by the discrete model and CBIS (constrained beam in solid) model. The efficiency and accuracy comparisons are investigated with reference to the analysis results by both models provided by LS-DYNA explicit finite element software. The geometric models are created using LS-PrePost, general purpose preprocessing software for meshing. The meshed models are imported to LS-DYNA where the input files are then analyzed. Winfrith and CSCM concrete material options are employed to describe the concrete damage behavior. The reinforcement material model is capable of isotropic and kinematic hardening plasticity. The load versus midspan deflection curves of the finite element models correlate with those of the experiment. Under the conditions of the same level of accuracy, the CBIS model is evaluated to have the following advantages over the discrete model. First, it has the advantage of reducing the time required for FE modeling; second, saving computer CPU time due to a reduction in total number of nodes; and third, securing a good aspect ratio of concrete elements.


Author(s):  
Satoshi Nagata ◽  
Shinichi Fujita ◽  
Toshiyuki Sawa

Abstract This paper is a report of the studies on the mechanical behaviors and leakage characteristics of pipe-socket threaded joints subjected to bending moment as well as internal pressure by means of experimental tests and finite element simulations. The paper dealt with the 3/4″ and 3″ joints, and the joints for both sizes have two different combinations of thread types in the pipe and socket, i.e. taper-taper thread combination or taper-parallel one, respectively. Experimental bending leak tests showed that the taper-taper joints could retain internal pressure under bending load up to nearly plastic collapse. The taper-parallel joints, however, could hardly keep internal pressure against bending moment even the sealing tape was applied to enhance the sealing performance. Finite element analysis was carried out to simulate those bending tests, especially to clarify the deformation and the stress distribution in the engaged threads in detail. The analysis demonstrated that the sealing performance of the joints highly depend on the contact conditions not only at the thread crest to thread root but also in between flank surfaces. A complicated leak path across the engaged threads under bending moment was identified by the simulation.


Sign in / Sign up

Export Citation Format

Share Document