Simulation of Pulsatile Blood Flow Through a Flexible Cannula

Author(s):  
Scott C. Corbett ◽  
Ahmet U. Coskun ◽  
Hamid N-Hashemi

Implantable devices in direct contact with flowing blood are currently being used to treat many medical conditions; however, thromboembolism, blood damage and the attendant risk for ischemic stroke remains a major impediment. Specifically, vascular access methods, performed by the insertion of cannulae into vessels, may give rise to non-physiological pressure variations and shear stresses. To date, the hydrodynamic behavior of cannulae has been evaluated by comparing their pressure loss-flow rate relationships, as obtained from in vitro experiments. Numerical studies have evaluated cannulae as rigid wall vessels with steady flow conditions [1]. Various catheter tip styles have been compared [2], and the fluid dynamics of arterial cannulae inserted in the aortic arch have been investigated [3]. Evaluation of shear stresses within a flexible wall cannula under pulsatile blood flow conditions is discussed herein. We anticipate that considerations for pulsating blood flow and flexible device walls will indicate that anticoagulation requirements can be minimized and device related complications can be decreased, thus increasing patient survival rates.

1991 ◽  
Vol 113 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Kazuo Tanishita ◽  
Masanobu Ujihira ◽  
Akihisa Watabe ◽  
Kunio Nakano ◽  
Peter D. Richardson ◽  
...  

A serpentine gas exchange unit was built with cylindrical tubular microporous membranes featuring periodic arcs with a fixed curvature ratio (ratio of tube radius to radius of curvature) of 1/14 and circular angles between 30 and 360 deg. Oxygen transfer was measured under steady and pulsatile blood flow conditions in vitro and ex vivo to assess the design features which most effectively augment gas transfer. Under steady blood flow conditions, oxygen transfer increased with circular angles beyond 70 deg. Under pulsatile conditions, a wide range of geometrical and fluid mechanical parameters could be combined to enhance gas transfer performance, which eventually depended upon the secondary Reynolds number and the Womersley parameter.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3238-3238
Author(s):  
WHITE Jennell ◽  
Moira M. Lancelot ◽  
Patrick Hines ◽  
Sharada A. Sarnaik

Abstract Abstract 3238 Introduction: Sickle cell disease (SCD) is characterized by microvascular occlusion mediated in part by adhesion of sickle erythrocytes (SS RBCs) to the vasculature. Advanced flow adhesion (FA) technology facilitates SS RBC adhesion studies in conditions that simulate in vivo microvascular physiology. Most currently available FA systems measure SS RBC adhesion in non-pulsatile flow conditions, versus pulsatile blood flow conditions generated by the cardiac cycle. The influence of pulsatile blood flow on SS RBC adhesion may be particularly important in pediatric SS RBC adhesion, as children have a broad range of heart rates. This study compares SS RBC adhesion in non-pulsatile and pulsatile flow conditions, utilizing a commercially available, microfluidic FA system. Methods: Peripheral blood was obtained from patients with homozygous SCD (n=7) in steady state (5–18 years) from the Sickle Cell Center at the Children's Hospital of Michigan. FA assays were performed in non-pulsatile and pulsatile flow conditions, at a shear stress of 1.0 dyne/cm2, and increasing shear stress up to 20 dyne/cm2to assess avidity. A programmable control unit regulated pulse frequency, shear stress, and temperature. Adhesion was measured to immobilized human laminin and vascular cell adhesion molecule-1 (VCAM-1). A static adhesion assay was used to assess initrinsic adhesive properties of SS RBCs independent of flow dynamics. Results: Standard assays were performed with 30 mL of isolated SS RBCs (1× 107 cells/mL), and SS RBC adhesion was comparable to levels previously reported in parallel plate flow adhesion assays. FA assays showed that adhesion to both laminin and VCAM-1 was significantly increased in the context of pulsatile blood flow (1.67Hz) compared to non-pulsatile blood flow by 8-fold and 56-fold, respectively. The relationship of SS RBC adhesion to increasing pulse frequencies was variable from patient to patient, although adhesion to both laminin and VCAM-1 was uniformly greater in all pulse frequencies tested (1.0, 1.5, 1.67, and 2.0 Hz) compared to non-pulsatile blood flow. When avidity of adhesion was tested 78% of SS RBCs remained adhered to VCAM-1 at the maximum 20dyne/cm2 shear stress, whereas 6% of SS RBCs remained adhered to laminin at a shear stress of 20 dynes/cm2. Pulsatile adhesion to VCAM-1 and laminin was unaffected by protein kinase A (PKA) inhibition, although adhesion to laminin decreased by 31% in one of three patients. To determine if increased adhesion under pulse-flow conditions was due to increased contact time with the immobilized substrate versus a change in the SS RBC's intrinsic adhesive state, we measured SS RBC adhesion in a static adhesion assay following exposure to pulsatile versus non-pulsatile conditions. There was no significant difference in static adhesion to VCAM-1, however adhesion of pulse-exposed SS RBCs to laminin was more variable. Static adhesion of pulse-exposed SS RBCs to laminin was reduced by 60% in the presence of a PKA inhibitor. Conclusions: Our data demonstrate the application of a commercially available microfluidic flow adhesion assay system for efficient assessment of SS RBC adhesive properties. In the future, such advances may allow SS RBC adhesive properties to be evaluated clinically as a predictive tool for future vaso-occlusive events, and to predict individual patient response to anti-adhesive therapy. The small volume of blood required makes this system particularly attractive for studying pediatric samples. Additionally, our data demonstrate that adhesion to both an endothelial cell substrate (VCAM-1) and a subendothelial matrix substrate (laminin) is significantly influenced by the presence of pulsatile blood flow. Although PKA may play a minor role in pulsatile adhesion to laminin, increased contact time with immobilized laminin and VCAM-1 may be a greater contributor to increased adhesion under pulsatile conditions versus non-pulsatile conditions. Pediatric SS RBCs adhered to VCAM at higher levels and with more avidity compared to laminin. The pulsatile flow conditions described in this study more closely approximate in vivo microvascular conditions compared to non-pulsatile conditions commonly used to study SS RBC adhesion. Based on these differences in adhesion under pulsatile versus non-pulsatile flow, incorporating pulsatile flow in future adhesion studies may be more representative of in vivo conditions. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Dooyoung Lee ◽  
Kuldeepsinh Rana ◽  
Karin Lee ◽  
Lisa A. DeLouise ◽  
Michael R. King

In previous work, we have described the adhesive capture of circulating stem cells to surfaces coated with adhesive selectin protein, both in vitro and in vivo. Here we describe PDMS surfaces microfabricated to contain an array of square 80 × 80 × 80 micron cavities. These cavities are intended to provide a local bioreactor environment to culture stem cells over extended periods of time, while sheltered from the higher shear stresses of the surrounding blood flow external of the cavities. In this paper we present in vitro flow experiments with polymeric, blood cell-sized microspheres, showing the creation of stable vortices within the microscale cavities. Computational fluid dynamics (CFD) was performed to predict the velocity field within the cavity, and for comparison with experimentally determined microsphere velocities. Future work will establish the ability to place local chemoattract molecules within the cavity interior, and the ability to accumulate viable stem cells within these cavities.


Author(s):  
E Kouhi ◽  
Y S Morsi ◽  
S H Masood

A three-dimensional (3D) computational model of stenotic coronary artery bypass grafting (CABG) system with fluid—structure interaction (FSI) using realistic physiological conditions is introduced. Unsteady pulsatile blood flow is applied to the wall of non-linear deformable arteries over the systolic period. In the analysis, the arbitrarily Lagrangian—Eulerian (ALE) formulation is used to couple the fluid region and solid domain. The method couples the equations of the deformation of the artery wall and applies them as the fluid domain boundary condition. The flow distribution and haemodynamic forces are presented in terms of velocity profiles and temporal and spatial wall shear stresses (WSSs) at the distal area. Rapid changes in the flow fields are observed in the early stages of the cardiac cycle, which alters the location of the recirculation zone from the toe to the host bed and then to the heel. The migration of the recirculation zone, considering the effect of deformability of the artery wall, indicates the same trend as the rigid wall model according to the location of low and high WSSs. However, the WSSs in the critical areas such as toe, heel, and suture lines are found to have dramatic drops in magnitudes in comparison with those of the rigid wall model. This could initiate the promotion of intimal hyperplasia (IH) and may cause an early graft failure in CABG.


Author(s):  
Amirhosein Manzoori ◽  
Famida Fallah ◽  
Mohammadali Sharzehee ◽  
Sina Ebrahimi

Stenosis can disrupt the normal pattern of blood flow and make the artery more susceptible to buckling which may cause arterial tortuosity. Although the stability simulations of the atherosclerotic arteries were conducted based on solid modeling and static internal pressure, the mechanical stability of stenotic artery under pulsatile blood flow remains unclear while pulsatile nature of blood flow makes the artery more critical for stresses and stability. In this study, the effect of stenosis on arterial stability under pulsatile blood flow was investigated. Fluid–structure interaction (FSI) simulations of artery stenosis under pulsatile flow were conducted. 3D idealized geometries of carotid artery stenosis with symmetric and asymmetric plaques along with different percentages of stenosis were created. It was observed that the stenosis percentage, symmetry/asymmetry of the plaque, and the stretch ratio can dramatically affect the buckling pressure. Buckling makes the plaques (especially in asymmetric ones) more likely to rupture due to increasing the stresses on it. The dominant stresses on plaques are the circumferential, axial and radial ones, respectively. Also, the highest shear stresses on the plaques were detected in [Formula: see text] and [Formula: see text] planes for the symmetric and asymmetric stenotic arteries, respectively. In addition, the maximum circumferential stress on the plaques was observed in the outer point of the buckled configuration for symmetric and asymmetric stenosis as well as at the ends of the asymmetric plaque. Furthermore, the artery buckling causes a large vortex flow at the downstream of the plaque. As a result, the conditions for the penetration of lipid particles and the formation of new plaques are provided.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1295-1298 ◽  
Author(s):  
Yasuaki Shida ◽  
Kenji Nishio ◽  
Mitsuhiko Sugimoto ◽  
Tomohiro Mizuno ◽  
Masaaki Hamada ◽  
...  

Abstract The metalloprotease ADAMTS13 is assumed to regulate the functional levels of von Willebrand factor (VWF) appropriate for normal hemostasis in vivo by reducing VWF multimer size, which directly represents the thrombogenic activity of this factor. Using an in vitro perfusion chamber system, we studied the mechanisms of ADAMTS13 action during platelet thrombus formation on a collagen surface under whole blood flow conditions. Inhibition studies with a function-blocking anti-ADAMTS13 antibody, combined with immunostaining of thrombi with an anti-VWF monoclonal antibody that specifically reflects the VWF-cleaving activity of ADAMTS13, provided visual evidence for a shear rate–dependent action of ADAMTS13 that limits thrombus growth directly at the site of the ongoing thrombus generation process. Our results identify an exquisitely specific regulatory mechanism that prevents arterial occlusion under high shear rate conditions during mural thrombogenesis.


2007 ◽  
Vol 129 (2) ◽  
pp. 202-215 ◽  
Author(s):  
Jennifer R. Zierenberg ◽  
Hideki Fujioka ◽  
Ronald B. Hirschl ◽  
Robert H. Bartlett ◽  
James B. Grotberg

The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (α), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O2 and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0≤A≤0.75, α=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and α are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O2 feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh̿, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying α for the ranges investigated. The effect of pulsatility on Sh̿ is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.


1993 ◽  
Vol 16 (7) ◽  
pp. 505-509 ◽  
Author(s):  
H.D. Polaschegg ◽  
R. Wojke

Single-needle (SN) dialysis employs tidal blood flow at the point of vascular access. The simplest SN systems convert this tidal flow to a pulsatile flow in the dialyser. It has been assumed that constant flow through the dialyser is necessary for optimal efficiency. Therefore SN blood circuits are designed to smooth the pulsatile flow in the dialyser to a relatively constant flow. This increases the complexity and cost of the SN system. In order to test the hypothesis that pulsatile flow results in lower clearances than constant flow, we performed measurements of clearance in vitro using pulsatile blood flow at time-averaged rates of 50-250 ml/min and tidal volumes 200-100 ml/min. These were compared with clearances using constant blood flow at the same rates. At all flow rates and at tidal volumes up to 50 ml, the clearance measurements obtained during pulsatile flow were identical to those obtained during constant flow.


Sign in / Sign up

Export Citation Format

Share Document