Effects of Growth Factors and Stress Conditioning on the Induction of Heat Shock Proteins and Osteogenesis

Author(s):  
Eunna Chung ◽  
Marissa Nichole Rylander

Tissue engineering is an emerging field that focuses on development of methods for repairing and regenerating damaged or diseased tissue. Successful development of engineered tissues is often limited by insufficient cellular proliferation and insufficient formation of extracellular matrix. To induce effective bone regeneration, many research groups have investigated the cellular response and capability for tissue regeneration associated with bioreactor conditions and addition of growth factors [1]. Bioreactors in tissue engineering have been developed to expose cells to a similar stress environment as found within the body or induce elevated stress levels for potential induction of specific cellular responses associated with tissue regeneration. Native bone encounters a diverse array of dynamic stresses such as shear, tensile, and compression daily. Stress conditioning protocols in the form of thermal or tensile stress have been shown to induce up-regulation of molecular chaperones called heat shock proteins (HSPs) and bone-related proteins like MMP13 (matrix metallopeptidase 13) [2] and OPG (osteoprotegerin) [3, 4]. HSPs have important roles in enhancing cell proliferation and collagen synthesis. Osteogenic growth factors such as TGF-β1 (transforming growth factor beta 1) and BMP-2 (bone morphogenetic protein 2) are related to bone remodeling and osteogenesis as well as HSP induction [5]. Therefore, identification of effective preconditioning using growth factors and stress protocols that enhance HSP expression could substantially advance development of bone regeneration. The purpose of this research was to identify preconditioning protocols using osteogenic growth factors and tensile stress applied through a bioreactor system to enhance expression of HSPs and bone-related proteins while minimizing cellular injury for ultimate use for bone regeneration.

Author(s):  
Eunna Chung ◽  
Marissa Nichole Rylander

Tissue regeneration can be enhanced by introduction of biochemical and mechanical cues. We investigated the effect of thermal and mechanical stress alone or in combination with growth factors (GFs) (BMP-2 and TGF-β1) on cell proliferation and induction of heat shock proteins and bone-related proteins by MC3T3-E1mouse preosteoblasts. Thermal and mechanical stress conditioning alone induced bone-related proteins such as osteocalcin (OCN), vascular endothelial growth factor (VEGF), osteoprotegerin (OPG), and osteopontin (OPN) and heat shock proteins (HSP27, HSP47, HSP70). Cell proliferation was increased by cyclic tension in combination with growth factors. Combined thermal and mechanical stress induced synergistic expression of HSPs and VEGF. Therefore, utilization of thermal and tensile stress conditioning can stimulate bone healing or regeneration.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Eunna Chung ◽  
Alana Cherrell Sampson ◽  
Marissa Nichole Rylander

Stress conditioning (e.g., thermal, shear, and tensile stress) of bone cells has been shown to enhance healing. However, prior studies have not investigated whether combined stress could synergistically promote bone regeneration. This study explored the impact of combined thermal and tensile stress on the induction of heat shock proteins (HSPs) and bone-related proteins by a murine preosteoblast cell line (MC3T3-E1). Cells were exposed to thermal stress using a water bath (44°C for 4 or 8 minutes) with postheating incubation (37°C for 4 hours) followed by exposure to cyclic strain (equibiaxial 3%, 0.2 Hz, cycle of 10-second tensile stress followed by 10-second rest). Combined thermal stress and tensile stress induced mRNA expression of HSP27 (1.41 relative fold induction (RFI) compared to sham-treated control), HSP70 (5.55 RFI), and osteopontin (1.44 RFI) but suppressed matrix metalloproteinase-9 (0.6 RFI) compared to the control. Combined thermal and tensile stress increased vascular endothelial growth factor (VEGF) secretion into the culture supernatant (1.54-fold increase compared to the control). Therefore, combined thermal and mechanical stress preconditioning can enhance HSP induction and influence protein expression important for bone tissue healing.


1993 ◽  
Vol 120 (3) ◽  
pp. 639-645 ◽  
Author(s):  
R Klemenz ◽  
A C Andres ◽  
E Fröhli ◽  
R Schäfer ◽  
A Aoyama

Stress induces the synthesis of several large and small heat shock proteins (hsp's). Two related small hsp's, hsp25 and alpha B crystallin exist in mice. alpha B crystallin is an abundant protein in several tissues even in the absence of stress. Particularly high amounts accumulate in the eye lens. Here we show that hsp25 is likewise constitutively expressed in many normal adult tissues. In the absence of stress the protein is most abundant in the eye lens, heart, stomach, colon, lung, and bladder. The stress-independent expression pattern of the two small hsp's is distinct. In several tissues the amount of hsp25 exceeds that accumulating in NIH 3T3 fibroblasts in response to heat stress. hsp25, like alpha B crystallin, exists in a highly aggregated form in the eye lens. The expression of hsp25 and alpha B crystallin in normal tissues suggests an essential, but distinct function of the two related proteins under standard physiological conditions.


2011 ◽  
Vol 140 (5) ◽  
pp. S-732
Author(s):  
Hyuk Soon Choi ◽  
Yoon Tae Jeen ◽  
Bora Keum ◽  
Yong Sik Kim ◽  
Hong Sik Lee ◽  
...  

2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


1990 ◽  
Vol 80 (2) ◽  
pp. 301-306
Author(s):  
Tiina Vahala ◽  
Tage Eriksson ◽  
Peter Engstrom

Sign in / Sign up

Export Citation Format

Share Document