Short-Term Characterization of Building Integrated Photovoltaic Panels

Solar Energy ◽  
2002 ◽  
Author(s):  
A. Hunter Fanney ◽  
Mark W. Davis ◽  
Brian P. Dougherty

Building integrated photovoltaics, the integration of photovoltaic cells into one or more exterior building surfaces, represents a small but growing part of today’s $2 billion dollar photovoltaic industry. A barrier to the widespread use of building integrated photovoltaics (BIPV) is the lack of validated predictive simulation tools needed to make informed economic decisions. The National Institute of Standards and Technology (NIST) has undertaken a multi-year project to compare the measured performance of BIPV panels to the predictions of photovoltaic simulation tools. The existing simulation models require input parameters that characterize the electrical performance of BIPV panels subjected to various meteorological conditions. This paper describes the experimental apparatus and test procedures used to capture the required parameters. Results are presented for custom fabricated mono-crystalline, polycrystalline, and silicon film BIPV panels and a commercially available triple junction amorphous silicon panel.

2003 ◽  
Vol 125 (1) ◽  
pp. 13-20 ◽  
Author(s):  
A. Hunter Fanney ◽  
Brian P. Dougherty ◽  
Mark W. Davis

Building integrated photovoltaics, the integration of photovoltaic cells into one or more exterior building surfaces, represents a small but growing part of today’s $2 billion dollar photovoltaic industry. A barrier to the widespread use of building integrated photovoltaics (BIPV) is the lack of validated predictive simulation tools needed to make informed economic decisions. The National Institute of Standards and Technology (NIST) has undertaken a multi-year project to compare the measured performance of BIPV panels to the predictions of photovoltaic simulation tools. The existing simulation models require input parameters that characterize the electrical performance of BIPV panels subjected to various meteorological conditions. This paper describes the experimental apparatus and test procedures used to capture the required parameters. Results are presented for custom fabricated mono-crystalline, polycrystalline, and silicon film BIPV panels and a commercially available triple junction amorphous silicon panel.


Solar Energy ◽  
2002 ◽  
Author(s):  
Mark W. Davis ◽  
A. Hunter Fanney ◽  
Brian P. Dougherty

The lack of predictive performance tools creates a barrier to the widespread use of building integrated photovoltaic panels. The National Institute of Standards and Technology (NIST) has created a building integrated photovoltaic (BIPV) “test bed” to capture experimental data that can be used to improve and validate previously developed computer simulation tools. Twelve months of performance data have been collected for building integrated photovoltaic panels using four different cell technologies – crystalline, polycrystalline, silicon film, and triple-junction amorphous. Two panels using each cell technology were present, one without any insulation attached to its rear surface and one with insulation having a nominal thermal resistance value of 3.5 m2·K/W attached to its rear surface. The performance data associated with these eight panels, along with meteorological data, were compared to the predictions of a photovoltaic model developed jointly by Maui Solar Software and Sandia National Laboratories (SNL), which is implemented in their IV Curve Tracer software [1]. The evaluation of the predictive performance tools was done in the interest of refining the tools to provide BIPV system designers with a reliable source for economic evaluation and system sizing.


2003 ◽  
Vol 125 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Mark W. Davis ◽  
A. Hunter Fanney ◽  
Brian P. Dougherty

The lack of predictive performance tools creates a barrier to the widespread use of building integrated photovoltaic panels. The National Institute of Standards and Technology (NIST) has created a building integrated photovoltaic (BIPV) test bed to capture experimental data that can be used to improve and validate previously developed computer simulation tools. Twelve months of performance data have been collected for building integrated photovoltaic panels using four different cell technologies—crystalline, polycrystalline, silicon film, and triple-junction amorphous. Two panels using each cell technology were present, one without any insulation attached to its rear surface and one with insulation having a nominal thermal resistance value of 3.5m2s˙K/W attached to its rear surface. The performance data associated with these eight panels, along with meteorological data, were compared to the predictions of a photovoltaic model developed jointly by Maui Solar Software and Sandia National Laboratories (SNL), which is implemented in their IV Curve Tracer software [1]. The evaluation of the predictive performance tools was done in the interest of refining the tools to provide BIPV system designers with a reliable source for economic evaluation and system sizing.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3412
Author(s):  
Reza Khalifeeh ◽  
Hameed Alrashidi ◽  
Nazmi Sellami ◽  
Tapas Mallick ◽  
Walid Issa

Semi-transparent Building Integrated Photovoltaics provide a fresh approach to the renewable energy sector, combining the potential of energy generation with aesthetically pleasing, multi-functional building components. Employing a range of technologies, they can be integrated into the envelope of the building in different ways, for instance, as a key element of the roofing or façade in urban areas. Energy performance, measured by their ability to produce electrical power, at the same time as delivering thermal and optical efficiencies, is not only impacted by the system properties, but also by a variety of climatic and environmental factors. The analytical framework laid out in this paper can be employed to critically analyse the most efficient solution for a specific location; however, it is not always possible to mitigate energy losses, using commercially available materials. For this reason, a brief overview of new concept devices is provided, outlining the way in which they mitigate energy losses and providing innovative solutions for a sustainable energy future.


2017 ◽  
Vol 66 (4) ◽  
pp. 717-730 ◽  
Author(s):  
Amir Abbaszadeh ◽  
Mehrdad Abedi ◽  
Ali Doustmohammadi

Abstract Arresters are widely used in power systems to protect other equipment against overvoltages. However, in some conditions, they can’t operate successfully. One of the disturbances leading to the failure of the riser pole arresters is the ferroresonance overvoltages. In this paper, at first the influence of different transformer simulation models of ATP software on the occurrence of ferroresonance is studied and then the effect of ferroresonance on the riser pole arrester has been scrutinized through the thermal and electrical performance of the arrester in an underground distribution system. The results show that the arrester temperature rises due to energy dissipation in a ferroresonance circumstance, which indeed may result into the explosion of the arrester. Also, applying different models of the transformer in the ATP software and comparing the results, it is shown that the available models do not show the same effect on the arrester.


2001 ◽  
Vol 123 (3) ◽  
pp. 194-199 ◽  
Author(s):  
A. Hunter Fanney ◽  
Brian P. Dougherty

The widespread use of building integrated photovoltaics appears likely as a result of the continuing decline in photovoltaic manufacturing costs, the relative ease in which photovoltaics can be incorporated within the building envelope, and the fact that buildings account for over 40% of the U.S. energy consumption. However, designers, architects, installers, and consumers need more information and analysis tools in order to judge the merits of building-integrated solar photovoltaic products. In an effort to add to the knowledge base, the National Institute of Standards and Technology (NIST) has undertaken a multiple-year project to collect high quality experimental performance data. The data will be used to validate computer models for building integrated photovoltaics and, where necessary, to develop algorithms that may be incorporated within these models. This paper describes the facilities that have been constructed to assist in this effort. The facilities include a mobile tracking photovoltaic test facility, a building integrated photovoltaic test bed, an outdoor aging rack, and a meteorological station.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000524-000530
Author(s):  
M. Ashraf Khan ◽  
Jason M. Kulick ◽  
Alfred M. Kriman ◽  
Gary H. Bernstein

Quilt Packaging (QP) is a novel high-speed superconnect (i.e. direct interchip interconnect), developed to improve electrical performance — signal delay, power loss, etc. Ultrahigh bandwidth has already been demonstrated for QP, but its unique structure requires thermal reliability issues to be studied. To this end, simulation models were developed to study the robustness of QP. QP structures were fabricated, and thermal cycling tests were performed focusing on the reliability for various shapes of nodules, the basic physical interconnect unit of QP. Simulations were performed to determine stress over a range of temperatures and estimate low cycle fatigue lifetimes. Simulations considered two types of solder and several adhesives. Thermal cycling experiments indicate that QP provides a robust structure, in agreement with the simulation results.


Author(s):  
Loren Bloomberg ◽  
Jim Dale

Traffic simulation packages like CORSIM and VISSIM are frequently used as tools for the analysis of traffic since they are effective approaches for quantification of the benefits and limitations of different alternatives. The concern of those who are cautious or skeptical about the application of a complex program to making a critical design decision is often appropriate, as many models are unproven or little information about their accuracy is available. As these simulation models become easier to use, it may be practical to use more than one model in some studies. The two-model approach was applied as a means of making the analysis more reliable and the results more defensible. The results proved the consistency and reasonableness of the simulation tools and provided everyone involved with confidence about the analysis. The study also illustrated the value of using a range of performance measures and a sensitivity analysis. More generally, it proved the value of providing as much comparative information as possible before making a design decision. The results were generally consistent, and the end product was a set of clear, defensible, and well-supported conclusions. Although the experience gained through the application of CORSIM and VISSIM was in some ways unique to the study area, this experience can provide insight to other transportation professionals charged with selecting and applying these simulation models to similar networks. To that end, some of the characteristics of both models are contrasted.


Author(s):  
Thomas Rumpf ◽  
Johannes Humer ◽  
Elisabeth Schneiderbauer ◽  
Michael Putz

Gas engines get an increasing market share compared to four stroke engines, especially in the field of energy systems. Under these special firing conditions engine components are stressed differently than in traditional diesel engines. This particularly is the case for bearings. In order to supplement the knowledge base for bearing performance under these aggravated conditions, special test methods have been developed to find out reasons for premature bearing failure characteristics. In combination with experience from the long term behavior of different bearing types in different gas engine applications, this data allows the development of improved bearing materials as well as bearing designs. Using this knowledge in combination with advanced simulation tools, a bearing supplier can offer assistance to select adequate bearing designs, give a life time prediction and in case of unexpected phenomena, redesign recommendations. The paper presents reasons and influences for life time limitations as well as different risk factors for available bearing types and situations. Based on field experience and data from the advanced bearing test procedures, values for bearing performance are given. Data for hydrodynamic performance, tribological properties and emergency running behavior, cavitation resistance, wear resistance and last, but not least corrosion resistance against active sulfur and halogens will be given for traditional and newly developed bearing materials. A short view into the future will finish the presentation.


Sign in / Sign up

Export Citation Format

Share Document