Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting

Author(s):  
D. Dane Quinn ◽  
Angela L. Triplett ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis

Self-contained long-lasting energy sources are rapidly increasing in importance as portable electronics and inaccessible devices such as wireless sensors are finding wider and more varied applications. However, in many circumstances replacing power supplies, such as conventional batteries, becomes impractical and the development of a self-renewing source of energy is paramount to the continued development of such devices. The ability to convert ambient mechanical energy to usable electrical energy fills these requirements and one aspect of current research seeks to increase the efficiency and performance of these energy harvesting systems. However, to achieve acceptable performance conventional vibration-based energy harvesting devices based on linear elements must be specifically tuned to match environmental conditions such as the frequency and amplitude of the external vibration. As the environmental conditions vary under ambient conditions the performance of these linear devices is dramatically decreased. The strategy to efficiently harvest energy from low-level, intermittent ambient vibration, proposed herein, relies on the unique properties of a particular class of strongly nonlinear vibrating systems that are referred to as “essentially” nonlinear.

Author(s):  
Zheqi Lin ◽  
Hae Chang Gea ◽  
Shutian Liu

Converting ambient vibration energy into electrical energy using piezoelectric energy harvester has attracted much interest in the past decades. In this paper, topology optimization is applied to design the optimal layout of the piezoelectric energy harvesting devices. The objective function is defined as to maximize the energy harvesting performance over a range of ambient vibration frequencies. Pseudo excitation method (PEM) is applied to analyze structural stationary random responses. Sensitivity analysis is derived by the adjoint method. Numerical examples are presented to demonstrate the validity of the proposed approach.


2022 ◽  
Author(s):  
Hannah S Leese ◽  
Miroslav Tejkl ◽  
Laia Vilar ◽  
Leopold Georgi ◽  
Hin Chun Yau ◽  
...  

There are a range of promising applications for devices that can convert mechanical energy from their local environment into useful electrical energy. Here, mechanical energy harvesting devices have been developed...


2021 ◽  
Vol 30 (1/2) ◽  
pp. 12-19
Author(s):  
Woongbi CHO ◽  
Jeong Jae WIE

Triboelectric nanogenerators (TENGs) are eco-friendly energy-harvesting systems that produce electrical energy from disordered mechanical energy. To enhance the triboelectric performances of TENGs, many researchers have conducted in-depth studies of the polymer materials utilized in TENGs, so numerous studies have been reported on the relationship between their material properties and their energy-harvesting capabilities. Triboelectric performance depends on the electrical properties of the materials used, such as their electron affinities and dielectric constants. Representative examples of positive and negative tribomaterials include PA6, PEO, PVDF, and fluorinated sulfur copolymers, respectively. This article introduces the relationship among the compositions, structures, triboelectric performances of the polymer materials, and composites used in TENGs and summarizes the representative polymer materials applied in the latest TENGs.


2015 ◽  
Vol 780 ◽  
pp. 39-44
Author(s):  
A.W. Khairul Adly ◽  
Y. Wahab ◽  
A.Y.M. Shakaff ◽  
Mazlee Mazalan

The ability to self-energize wireless sensor node promote the popularity of energy harvesting technique especially by using ambient vibration as the source of energy. In addition, the successful integration of the energy harvesting element on the same wafer as a wireless sensor node will promote the production in the MEMS scale and will reduce the overall cost of production. The usage of the cantilever structure as the transducer for converting mechanical energy (vibration) due to deflection of cantilever into the electrical energy is possible by depositing piezoelectric material on the cantilever. The usage of cantilever provide the simplest way for fabrication in the MEMS scale and also provide the ability to achieve low natural frequency. This paper present the work done on the simulation of the cantilever structure with the top end and back etch proof mass towards achieving low natural frequency in the MEMS scale by using IntelliSuite software.


2018 ◽  
Vol 211 ◽  
pp. 05003 ◽  
Author(s):  
Zdenek Hadas ◽  
Jan Smilek ◽  
Ondrej Rubes

This paper deals with an energy harvesting review and analysis of an ambient mechanical energy on a trackside during a passing of a train. Trains provide very high level of vibration and deformation which could be converted into useful electricity. Due to maintenance and safety reasons a rail trackside includes sensing systems and number of sensor nodes is increased for modern transportation. Recent development of modern communication and ultra-low power electronics allows to use energy harvesting systems as autonomous source of electrical energy for these trackside objects. Main aim of this paper is model-based design of proposed vibration energy harvesting systems inside sleeper and predict harvested power during the train passing. Measurements of passing train is used as input for simulation models and harvested power is calculated. This simulation of proposed energy harvesting device is very useful for future design.


Author(s):  
Lin Dong ◽  
Frank T. Fisher

Vibration-based energy harvesting is a process by which ambient vibrations are converted to electrical energy, and is of interest for supplementing or replacing the batteries of individual nodes comprising wireless sensor networks among other applications. Generally, it is desired to match the resonant frequencies of the device with the primary ambient vibration frequencies for optimal energy harvesting performance. While previous work has demonstrated the use of magnetic forces to tune the resonant frequencies of vibrating energy harvesting structures, such efforts have been limited to one-dimensional analyzes. Here frequency tuning is realized by applying magnetic forces to the device in two-dimensional space, such that the resulting magnetic force has both horizontal and vertical components. In the case of a cantilever beam, the transverse force contributes to the transverse stiffness of the system while the axial force contributes to a change in the geometric stiffness of the beam. The effective resonant frequency of the device is then a function of the contributions of the original stiffness of the beam and the two additional stiffness components introduced by the presence of the magnet in 2D space. The simulation results from a COMSOL magnetostatics 3D model agree well with an analytical model describing the magnetic forces between the magnets as a function of location. Such 2D magnetic stiffness tuning approaches may be useful in applications where space constraints impact the available design space of the energy harvester.


Author(s):  
Kevin Remick ◽  
Angela Triplett ◽  
D. Dane Quinn ◽  
Donald M. McFarland ◽  
Alexander Vakakis ◽  
...  

We address the conversion of mechanical energy from low-level ambient vibration into usable electrical energy. Development of this self-renewing energy source is vital to portable electronics and wireless sensors, especially since battery development has reached a plateau over the past decade. The passive nature of the proposed energy harvesting system provides for this self-renewing energy source. Conventional vibration energy harvesting systems are often based on linear elements, requiring specific tuning to achieve resonance and, thus, acceptable performance. This tuning is based on the predominant frequency of the ambient vibration. Linear energy harvesting systems are less desirable because ambient environmental conditions such as frequency content change with time, decreasing the performance of the system. This project focuses on the unique properties of a class of strongly nonlinear vibrating systems to effectively harvest energy under several excitation conditions. These excitations include low-level vibration from a wide range of environmental conditions including frequency content and low-level successive impulses at various frequencies. The later excitation condition is examined in this work. Numerical simulations of the proposed model, an essentially nonlinear oscillator with purely cubic stiffness attached to a larger grounded linear oscillator, have shown capture into sustained dynamic instability from successive low-level impulsive excitations. This sustained dynamic instability results in high energy harvesting efficiency. The electromechanical coupling is realized by a piezoelectric element in the mechanical system with voltage dissipated across a resistive load in the electrical system. This study focuses on characterizing the response of the system to varying parameters, such as fundamental period of the linear oscillator, impact frequency, and impact magnitude. An optimal fundamental period and impact frequency for dynamic instability are examined in this work. Analysis of the frequency-energy relation reveals the presence of sustained dynamic instability when the system operates under these specific parameters, leading to an optimized system for experimental validification.


Author(s):  
D. Castagnetti

The investigation of energy harvesting devices, able to convert freely-available ambient energy into electrical energy, has significantly improved. To this aim, the most suitable form of ambient energy is the kinetic one, being almost ubiquitous and easily accessible. Among the available conversion technologies, piezoelectric energy harvesting devices are one of the most promising, due to their simple configuration and high conversion efficiency. The most demanding task is to identify simple and efficient multi-frequency structures in the ambient vibration range. To this aim, this work proposes four fractal-inspired structures for piezoelectric energy harvesting. Through computational analysis, their frequency response is calculated up to 100Hz. The structures are examined both in the micro and macro scale and the effect of the iteration level of the fractal geometry is also assessed. By considering the bending strain associated to each mode shape, a quantitative criterion to assess the harvesting efficiency of the proposed structures is introduced.


Author(s):  
Virgilio J Caetano ◽  
Marcelo A Savi

Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document