Numerical Prediction of Effective Transformation Properties of Hybrid SMA-Ceramic Composites

Author(s):  
Brian Lester ◽  
Yves Chemisky ◽  
Dimitris Lagoudas

Metal-ceramic composites are being increasingly explored in an effort to find new materials for use in extreme environments. Via functional grading of of the volume fraction of the constituant phases and other techniques, the material can be optimized to incorporate the mechanical properties of the metal phase with the thermal properties of the ceramic phase. To get further benefit of the metal phase, a new area being investigated is the incorporation of Shape Memory Alloys (SMAs). In order to predict the phase transformation features of an SMA embedded in a stiff ceramic matrix, a micromechanical approach is developed to find the effective phase diagram of the ceramic-SMA composite. From this analysis, other composite characteristics such as stress in each phase and the evolution of tranformation strain in the SMA can be determined in order to improve the design of such new composite materials.

Author(s):  
Chen-bo Gao ◽  
Peng-fei Xu ◽  
Fei Ruan ◽  
Chen-yu Yang

This study provides a novel method to prepare metal-ceramic composites from magnetically selected iron ore using microwave heating. By introducing three different microwave susceptors (Activated Carbon, SiC, and a mixture of Activated Carbon and SiC) during the microwave process, effective control of the ratio of metallic and ceramic phases has been achieved easily. The effects of the three susceptors on the microstructure of the metal-ceramics and the related reaction mechanisms were also investigated in detail. The results show that the metal phase (Fe) and ceramic phase (Fe2SiO4, FeAl2O4) can be maintained, but the metal phase to ceramic phase changed significantly. In particular, the microstructures appeared as well-distributed nanosheet structures with diameters of ~400 nm and thicknesses of ~20 nm when SiC was used as the microwave susceptor.


Author(s):  
A. M. Dongare ◽  
B. LaMattina ◽  
A. M. Rajendran

Metal–ceramic composites are an emerging class of materials for use in the next-generation high technology applications due to their ability to sustain plastic deformation and resist failure in extreme mechanical environments. Large scale molecular dynamics simulations are used to investigate the performance of nanocrystalline metal–matrix composites (MMCs) formed by the reinforcement of the nanocrystalline Al matrix with a random distribution of nanoscale ceramic particles. The interatomic interactions are defined by the newly developed angular-dependent embedded atom method (A-EAM) by combining the embedded atom method (EAM) potential for Al with the Stillinger–Weber (SW) potential for Si in one functional form. The molecular dynamics (MD) simulations are aimed to investigate the strengthening behavior and the tension–compression strength asymmetry of these composites as a function of volume fraction of the reinforcing Si phase. MD simulations suggest that the strength of the nanocomposite increases linearly with an increase in the volume fraction of Si in the Al-rich region, whereas the increase is very sharp in the Si-rich region. The higher strength of the nanocomposite is attributed to the reduced sliding/rotation between the Al/Si and the Si/Si grains as compared to the pure nanocrystalline metal.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2499 ◽  
Author(s):  
Elena G. Zemtsova ◽  
Denis V. Yurchuk ◽  
Pavel E. Morozov ◽  
Petr M. Korusenko ◽  
Vladimir K. Kudymov ◽  
...  

The development of new composites with improved functional properties is the important task of modern materials science. The composites must be structurally organized to provide improved properties. For metal-ceramic composites, there is a need for a uniform distribution of the dispersed ceramic phase in the bulk metallic matrix The modification of the dispersed ceramic phase surface with a metal coating is one of the more effective ways to accomplish this. Particularly, in this work, the conditions of Ni nanolayer deposition on titanium carbide (TiC) particles were studied. The goal was to create core–shell particles with a thickness of the Ni coating on TiC not exceeding 90 nm. Preliminary work was also carried out to study the effect of the dispersed phase composition on the mechanical properties of the composite with an Al matrix.


2012 ◽  
Vol 710 ◽  
pp. 371-376 ◽  
Author(s):  
K.M. Sree Manu ◽  
V.G. Resmi ◽  
M. Brahmakumar ◽  
N. Anand ◽  
T.P.D. Rajan ◽  
...  

Metal-Ceramic Composites with high volume fraction of reinforcement find wide applications in the area of tribology and high temperature resistant components like piston, brake pads, heat shields etc. Most of these components can be made by infiltration processing of porous ceramic preforms. The present investigation is to synthesize porous ceramic preform based on SiC particles using inorganic salt as a pore forming agent and Squeeze infiltration is applied to fabricate the Al-SiC metal-ceramic composites. The direct squeeze infiltration of 6061 aluminum alloy on SiC preform is successfully carried out with the controlled process parameters of initial preform temperature, liquid metal superheat, squeeze pressure and its rate of application, and die temperature. The preform and composites are characterized using XRD, optical microscopy, electron microscopy, and hardness and compression strength. Porous ceramic preform with more than 50% porosity has been fabricated by sodium chloride as pore former. The infiltrated composite have shown uniform and complete infiltration of Aluminium alloy in between SiC particles and posses very high hardness of 147 BHN in as cast condition compared to 57 BHN for the 6061 Al alloy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik Poloni ◽  
Florian Bouville ◽  
Christopher H. Dreimol ◽  
Tobias P. Niebel ◽  
Thomas Weber ◽  
...  

AbstractThe brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the “mortar” phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities. Such metal-ceramic composites are prepared through the sol–gel deposition of iron-based coatings on alumina platelets and the magnetically-driven assembly of the pre-coated platelets into nacre-like architectures, followed by pressure-assisted densification at 1450 °C. With the help of state-of-the-art characterization techniques, we show that this processing route leads to lightweight inorganic structures that display outstanding fracture resistance, show noticeable magnetization and are amenable to fast induction heating. Materials with this set of properties might find use in transport, aerospace and robotic applications that require weight minimization combined with magnetic, electrical or thermal functionalities.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (5) ◽  
pp. 410-418 ◽  
Author(s):  
Angelo Bongiorno ◽  
Clemens J. Först ◽  
Rajiv K. Kalia ◽  
Ju Li ◽  
Jochen Marschall ◽  
...  

AbstractThe broader context of this discussion, based on a workshop where materials technologists and computational scientists engaged in a dialogue, is an awareness that modeling and simulation techniques and computational capabilities may have matured sufficiently to provide heretofore unavailable insights into the complex microstructural evolution of materials in extreme environments.As an example, this article examines the study of ultrahigh-temperature oxidation-resistant ceramics, through the combination of atomistic simulation and selected experiments.We describe a strategy to investigate oxygen transport through a multi-oxide scale—the protective layer of ultrahigh-temperature ceramic composites ZrB2-SiC and HfB2-SiC—by combining first-principles and atomistic modeling and simulation with selected experiments.


2012 ◽  
Vol 95 (10) ◽  
pp. 3078-3083 ◽  
Author(s):  
Siddhartha Roy ◽  
Karl Günter Schell ◽  
Ethel Claudia Bucharsky ◽  
Pascal Hettich ◽  
Stefan Dietrich ◽  
...  

1998 ◽  
Vol 13 (4) ◽  
pp. 803-811 ◽  
Author(s):  
Philippe Colomban

The problems encountered to tailor simultaneously various specific chemical or physical properties are discussed. Selected polymeric precursors used in association with fine powders allow the control of the nano/microstructure of composites and hence the preparation of functional (FGM) and hierarchical reinforced (HRC) composites, making it possible to combine several kinds of fibers, interphases, and matrices in the same composite (hot microwave absorbent), to control the fiber/matrix interface (long life times composites), to achieve net-shape sintering of 3D composite matrices, and to prepare thick films of metal-ceramic composites with tailored microwave absorption (radar stealthiness).


Sign in / Sign up

Export Citation Format

Share Document