Towards Self-Sensing of DEAP Actuators: Capacitive Sensing Experimental Analysis

Author(s):  
Alexander York ◽  
Stefan Seelecke

Dielectric Electro-Active Polymers (DEAP’s) have become attractive material for various actuation and sensing applications such as light weight and energy efficient valve and pumping systems. The materials ability to act as both and actuator and a sensor enable DEAP actuators to have “self-sensing” capabilities. This advancement provides low cost actuator systems that do not require external sensors for feedback control. This paper explores the capacitive sensing capabilities of a DEAP actuator under loading conditions typical for pumping and valve applications. The capacitive sensing capabilities of the actuator are tested using a method similar to that used by Jung et al. [1] which uses the DEAP actuator as a variable capacitor in a high pass filter circuit. This sensing circuit produces a direct voltage output when the actuator is displaced. The sensing response of this system is experimentally investigated under mechanical loading. The sensor is shown to have an effective sensitivity of .041 (V/Vexc) / mm. In addition, the initial results of a dual sensing and actuating system are presented.

2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Author(s):  
Maryam Abata ◽  
Mahmoud Mehdi ◽  
Said Mazer ◽  
Moulhime El Bekkali ◽  
Catherine Algani

Author(s):  
Qibo Mao ◽  
Yuande Wang ◽  
Shizuo Huang

In this study, a new methodology is presented to detect the sensor fault for piezoelectric array based on the filtered frequency response function (FRF) shapes. The proposed method does not require prior knowledge about healthy piezoelectric array. First, the imaginary parts of FRFs from the piezoelectric array during vibration are measured and normalized to obtain the FRF shapes in different frequencies. Then the irregularities in these FRF shapes are extracted by using high-pass filter with properly chosen cut-off frequency. These abnormal irregularities on the filtered FRF shape curves indicate the location of the faulty sensor, due to the irregularity of FRF shapes introduced by the faulty piezoelectric element. The proposed sensor fault method is experimentally demonstrated on a clamped-clamped steel beam mounted with piezoelectric buzzer array. Two common piezoelectric sensor fault types including sensor breakage and debonding are evaluated. The experimental results indicate that the proposed method has great potential in the detection of the sensor fault for piezoelectric array as it is simple and does not require the FRF data of the healthy sensor array as a baseline.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xianyun Peng ◽  
Junrong Hou ◽  
Yuying Mi ◽  
Jiaqiang Sun ◽  
Gaocan Qi ◽  
...  

Electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand...


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 108
Author(s):  
Giancarla Alberti ◽  
Camilla Zanoni ◽  
Vittorio Losi ◽  
Lisa Rita Magnaghi ◽  
Raffaela Biesuz

This review illustrates various types of polymer and nanocomposite polymeric based sensors used in a wide variety of devices. Moreover, it provides an overview of the trends and challenges in sensor research. As fundamental components of new devices, polymers play an important role in sensing applications. Indeed, polymers offer many advantages for sensor technologies: their manufacturing methods are pretty simple, they are relatively low-cost materials, and they can be functionalized and placed on different substrates. Polymers can participate in sensing mechanisms or act as supports for the sensing units. Another good quality of polymer-based materials is that their chemical structure can be modified to enhance their reactivity, biocompatibility, resistance to degradation, and flexibility.


2021 ◽  
Author(s):  
Yingle Tao ◽  
Qiangqiang Li ◽  
Qiannan Wu ◽  
Haiqing Li

Localized eddy current heating delivered by metal foam embedded in a MOF monolith provides a novel, low-cost, and energy efficient way to overcome the thermal insulation nature of MOF monoliths and realize their highly efficient regenerations.


Sign in / Sign up

Export Citation Format

Share Document