A Novel Bio-Inspired Pneumatic Valve Adapter for Soft Robotic Vasculature

Author(s):  
Benjamin O. Saunders ◽  
John P. Swensen

Abstract This paper proposes a novel pneumatic valve adapter that decreases the size and quantity of pneumatic tubes and valves necessary for soft robotics by mimicking cardiovascular systems. Some cardiovascular systems, evolved to be powered by a single reservoir, the heart, which in turn powers the rest of the body by systematically opening and closing valves as needed. The presented valve adapter consists of a set of concentric tube, where both tubes have strategically patterned holes. The inner tube can be moved translationally and rotationally to align with designated hole positions in the outer tube, thus opening and closing pathways to chambers for pressure flow. The two-tube system can be used to either pressurize a chamber or depressurize a chamber or multiple chambers simultaneously.

MRS Advances ◽  
2018 ◽  
Vol 3 (50) ◽  
pp. 3003-3009 ◽  
Author(s):  
Aditya N. Sardesai ◽  
Xavier M. Segel ◽  
Matthew N. Baumholtz ◽  
Yiheng Chen ◽  
Ruhao Sun ◽  
...  

ABSTRACTOne of the goals of soft robotics is the ability to interface with the human body. Traditionally, silicone materials have dominated the field of soft robotics. In order to shift to materials that are more compatible with the body, developments will have to be made into biodegradable and biocompatible soft robots. This investigation focused on developing gummy actuators which are biodegradable, edible, and tasty. Creating biodegradable and edible actuators can be both sold as an interactive candy product and also inform the design of implantable soft robotic devices. First, commercially available gelatin-based candies were recast into pneumatic actuators utilizing molds. Edible robotic devices were pneumatically actuated repeatedly (up to n=8 actuations) using a 150 psi power inflator. To improve upon the properties of actuators formed from commercially available candy, a novel gelatin-based formulation, termed the “Fordmula” was also developed and used to create functional actuators. To investigate the mechanics and functionality of the recast gummy material and the Fordmula, compression testing and biodegradation studies were performed. Mechanical compression tests showed that recast gummy materials had similar properties to commercially available candies and at low strain had similar behavior to traditional silicone materials. Degradation studies showed that actuation was possible within 15 minutes in a biologically relevant solution followed by complete dissolution of the actuator afterwards. A taste test with elementary aged children demonstrated the fun, edible, and educational appeal of the candy actuators. Edible actuator development was an entry and winning submission in the High School Division of the Soft Robotics Toolkit Design Competition hosted by Harvard University. Demonstration of edible soft robotic actuators created by middle and high school aged students shows the applicability of the Soft Robotics Toolkit for K12 STEM education.


1961 ◽  
Vol 200 (3) ◽  
pp. 551-556 ◽  
Author(s):  
John A. Johnson ◽  
Vincent Gott ◽  
Frederick Welland

The perfusion rates of the brain, intestine and heart ventricle were studied under conditions of total body perfusion. The perfusion rates were estimated by using antipyrine and D2O as reference substances. Local flow was determined from arterial curves and tissue analysis. When the total body perfusion rate was varied between 20 and 80 cc/kg/min., it was found at each rate that the perfusion rate of these organs was over three times that of the body as a whole. At the lowest flows these three organs were favored even more. Tables of perfusion rates at various sites in the brain and intestine are given. Pressure-flow curves for the brain, intestine and heart are given.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fathia H. A. Salem ◽  
Khaled S. Mohamed ◽  
Sundes B. K. Mohamed ◽  
Amal A. El Gehani

The state of the art in the technology of prosthetic hands is moving rapidly forward. However, there are only two types of prosthetic hands available in Libya: the Passive Hand and the Mechanical Hand. It is very important, therefore, to develop the prosthesis existing in Libya so that the use of the prosthesis is as practical as possible. Considering the case of amputation below the elbow, with two movements: opening and closing the hand, this work discusses two stages: developing the operation of the body-powered prosthetic hand by controlling it via the surface electromyography signal (sEMG) through dsPIC30f4013 processor and a servo motor and a software based on fuzzy logic concept to detect and process the EMG signal of the patient as well as using it to train the patient how to control the movements without having to fit the prosthetic arm. The proposed system has been practically implemented, tested, and gave satisfied results, especially that the used processor provides fast processing with high performance compared to other types of microcontrollers.


2013 ◽  
Vol 304 (8) ◽  
pp. R621-R627 ◽  
Author(s):  
James S. Waters ◽  
Wah-Keat Lee ◽  
Mark W. Westneat ◽  
John J. Socha

Rhythmic patterns of compression and reinflation of the thin-walled hollow tubes of the insect tracheal system have been observed in a number of insects. These movements may be important for facilitating the transport and exchange of respiratory gases, but observing and characterizing the dynamics of internal physiological systems within live insects can be challenging due to their size and exoskeleton. Using synchrotron X-ray phase-contrast imaging, we observed dynamical behavior in the tracheal system of the beetle, Odontotaenius disjunctus. Similar to observations of tracheal compression in other insects, specific regions of tracheae in the thorax of O. disjunctus exhibit rhythmic collapse and reinflation. During tracheal compression, the opposing sides of a tracheal tube converge, causing the effective diameter of the tube to decrease. However, a unique characteristic of tracheal compression in this species is that certain tracheae collapse and reinflate with a wavelike motion. In the dorsal cephalic tracheae, compression begins anteriorly and continues until the tube is uniformly flattened; reinflation takes place in the reverse direction, starting with the posterior end of the tube and continuing until the tube is fully reinflated. We report the detailed kinematics of this pattern as well as additional observations that show tracheal compression coordinated with spiracle opening and closing. These findings suggest that tracheal compression may function to drive flow within the body, facilitating internal mixing of respiratory gases and ventilation of distal regions of the tracheal system.


2019 ◽  
Vol 116 (40) ◽  
pp. 19841-19847 ◽  
Author(s):  
Onur Aydin ◽  
Xiaotian Zhang ◽  
Sittinon Nuethong ◽  
Gelson J. Pagan-Diaz ◽  
Rashid Bashir ◽  
...  

The integration of muscle cells with soft robotics in recent years has led to the development of biohybrid machines capable of untethered locomotion. A major frontier that currently remains unexplored is neuronal actuation and control of such muscle-powered biohybrid machines. As a step toward this goal, we present here a biohybrid swimmer driven by on-board neuromuscular units. The body of the swimmer consists of a free-standing soft scaffold, skeletal muscle tissue, and optogenetic stem cell-derived neural cluster containing motor neurons. Myoblasts embedded in extracellular matrix self-organize into a muscle tissue guided by the geometry of the scaffold, and the resulting muscle tissue is cocultured in situ with a neural cluster. Motor neurons then extend neurites selectively toward the muscle and innervate it, developing functional neuromuscular units. Based on this initial construct, we computationally designed, optimized, and implemented light-sensitive flagellar swimmers actuated by these neuromuscular units. Cyclic muscle contractions, induced by neural stimulation, drive time-irreversible flagellar dynamics, thereby providing thrust for untethered forward locomotion of the swimmer. Overall, this work demonstrates an example of a biohybrid robot implementing neuromuscular actuation and illustrates a path toward the forward design and control of neuron-enabled biohybrid machines.


1881 ◽  
Vol 32 (212-215) ◽  
pp. 1-11 ◽  

In Holothuria the polian vesicle opens freely into a wide circular canal a short distance from the termination of the stone canal. From this circular canal five lozenge-shaped sinuses project forwards, and from each of these two large oval sinuses run forward parallel with each other─the ten oval sinuses becoming continuous with the hollow stems of the tentacles. Injection of the polian vesicle shows that it forms one continuous tube system with the circular canal and its sinuses, oval sinuses and tentacles, ampullæ and pedicels. Unless the pressure is kept up for a considerable time there is no penetration of the injected fluid into the stone canal, and either the ring, the vesicle, or a sinus gives way before the fluid reaches the madreporic plate. Specimens injected with a gelatine mass show that each canal sinus opens into a cæcal tube, which runs forwards internal to the sinuses of the tentacles as far as a wide circum-oral space. This space communicates by well-defined apertures with that portion of the body cavity which lies between the sinuses and the œsophagus, and which is reached through the circular apertures between the sinuses of the circular canal. Each canal sinus has three other apertures in its walls. It opens by a small round aperture into a radial canal, and the two other apertures occur as minute slits, one at each side of the orifice of the radial canal leading into the adjacent tentacle sinuses. When the tentacle into which the sinus opens is protruded, there is no constriction between the sinus and the tentacle ; but when the ten­tacle is retracted, there is a well-marked constriction at the junction of the sinus with the tentacle. The eversion of the perisome and the protrusion of the tentacles are effected chiefly by the shortening of the polian vesicle and the constriction of the longitudinal muscular bands, which run from the inner surface of the body wall between each two adjacent tentacle-sinuses ; but the circular fibres of the body wall also assist in the process by contracting immediately behind the group of sinuses, so as to act on them by direct pressure, and also indirectly by forcing the body fluid against them.


Author(s):  
Weston R. Olson ◽  
Panagiotis Polygerinos

Limb sensorimotor function plays an important role in activities of daily living (ADLs) and quality of life. Spinal cord dysfunctions, such as cervical spondylotic myelopathy (CSM), often affect limb function and limit independence. In this paper, we apply technologies from the emerging field of soft robotics to develop Soft Robotic 3rd Arms (SR3As) that branch out of the body — thus providing an artificial limb that enables effective execution of ADLs for CSM patients and the like. Soft robotics is a fairly recent addition to the field of robotics. Differing from traditional, “hard”, robotics, soft robotics are made of flexible materials such as silicone rather than stiff materials such as metals. One such soft robotic actuator is the fiber-reinforced actuator (FRA). Fabricated utilizing a combination of silicone bladder(s) and inextensible materials, these actuators are able to perform one of various motions through changes of pressure [1]. Supernumerary limbs (3rd arms), in contrast, are extra robotic limbs that can function cooperatively or independently of the user’s own limbs. These differ from exoskeletal robotics, as they are not fixated to the user’s limb to augment strength, but rather are placed elsewhere on the body to assist in tasks that would otherwise require multiple people. Examples of such devices include MIT/Boeing’s supernumerary arms to assist in the assembly of aircraft fuselage [2] or the supernumerary hand Softhand [3]. Combining these two concepts, an articulate SR3A was created (Fig. 1). By replacing traditional actuators with soft actuators, the limb is not only lighter, but it also better replicates the equivalent human limb. In addition to these benefits, the SR3A would also need to be less expensive to fabricate and actuate than an arm using rigid body components. This paper presents the design of a proof-of-concept prototype of a SR3A utilizing soft robotic actuators that could be used to assist individuals with hand impairments perform ADLs.


Author(s):  
Gordana Bošnjaković ◽  
◽  
Gojko Vladić ◽  

In today’s increasingly competitive market environment, new packaging must meet more requirements than before to meet customer expectations. The packaging must meet not only functional and aesthetic requirements but also ergonomic requirements to ensure satisfying user experience. An important issue in ergonomic design is the identification of factors that lead to user comfort and discomfort. The packaging is a product that undergoes manual manipulation and given the various forms of packaging and it's opening and closing systems, they require using different grip types and movements. Using packaging that is not well designed can cause intense physical exertion and frustration for users. The subject of this paper is a review of methodologies for assessing the ergonomics of packaging products. Methodologies for evaluating the ergonomic characteristics of packaging provide a proposal for structuring the investigation. Also, it gives a proposal for the proper prioritization of a packaging problem that should be identified as the most dangerous risks for physical injuries or for causing stressful situations to users. First, it is necessary to gain a clear insight into how the users handle the packaging in order to create knowledge and a clear idea of what is useful or harmful in the existing packaging design and to find the potential for its improvement. There are various methods for studying, analyzing and evaluating user experience while using a packaging. Combining such methods with knowledge of the anatomical structure of the body and how it reacts to the load enables the creation of efficient and ergonomically designed packaging. This paper will present methodologies and guidelines for assessing and improving the ergonomic qualities of packaging. The aim of this paper is to define the key factors and most relevant methodologies for conducting successful ergonomic research.


1987 ◽  
Vol 131 (1) ◽  
pp. 301-321 ◽  
Author(s):  
PHILIP L. NEWLAND ◽  
DOUGLAS M. NEIL

1. The righting reactions of the uropod exopodites of the Norway lobster, Nephrvps norvegicus, induced by stimulation of the statocysts, were studied during both imposed body tilts in different vertical planes and freely expressed manoeuvres. 2. The opening and closing movements of the uropod exopodite were brought about by the reciprocal activity of the dorsal abductor muscles and the reductor muscles, respectively. 3. The uropods were held symmetrically open when the animal was upright, but adopted an asymmetrical pattern, with the downward uropod open and the upward uropod closed, during imposed body roll. 4. In an imposed pitch of the body, the uropods closed symmetrically on headdown movement and opened symmetrically on head-up movement. The response pattern which occured in roll persisted through intermediate vertical planes to within 10° of true pitch. 5. Removal of the statolith from a single statocyst caused the zone of symmetrical uropod responses to shift towards the operated side, but did not alter its angular dimensions. Bilateral statolith removal abolished the uropod reaction to tilt. 6. Animals released in mid-water exactly in the pitch plane recovered their upright posture by a pitching movement, using symmetrical motor reactions of the abdomen and its appendages. Animals released at all other possible orientations used an initial rolling movement, involving an asymmetrical disposition of the appendages. The chelipeds did not contribute significantly to righting in roll, but both the lateral beating of the swimmerets and the asymmetrical disposition of the uropods produced righting torques as the animal descended through the water. 7. These results are discussed in terms of the hydromechanical effect of asymmetrical uropod postures, and the functional significance of the distinct switching between symmetrical and asymmetrical patterns. Implications for the mechanisms of statocyst control of uropod righting reactions, in terms of both the magnitude and the direction of body tilt, are also considered. Note: Present address: Physiological Laboratory, Department of Zoology, Faculty of Science, University of Hokkaido, Sapporo 060, Japan.


Sign in / Sign up

Export Citation Format

Share Document