Comparison of Ar electron‐cyclotron‐resonance plasmas in three magnetic field configurations. I. Electron temperature and plasma density

1994 ◽  
Vol 12 (5) ◽  
pp. 2767-2774 ◽  
Author(s):  
Kevin L. Junck ◽  
Ward D. Getty
1991 ◽  
Vol 69 (3-4) ◽  
pp. 195-201 ◽  
Author(s):  
P. K. Shufflebotham ◽  
D. J. Thomson

This paper presents preliminary measurements of the spatial variation of the plasma density, electron temperature, plasma potential, and floating voltage within a divergent magnetic field electron cyclotron resonance (ECR) plasma processing reactor. The measurements are performed using an orbital-motion-limited cylindrical Langmuir probe designed specifically for use in these plasmas. A brief discussion of the stability and uniformity of divergent field plasmas in general, and qualitative techniques for the diagnosis of these properties, is also given. It was found that these plasmas generally occurred in distinct "modes," characterized by unique shapes and dependences on system variables, and between which discontinuous, noisy, and often bistable transitions occurred. Axially resolved probe measurements performed under ECR conditions showed that the plasma density exhibited a broadly peaked profile, while the electron temperature showed a sharp peak at ECR. The differences in these profiles leads to three qualitatively different plasma regions available for use in ECR processing. The variation of the plasma potential explains the origin of the axial ion beams that commonly occur in these systems.


1992 ◽  
Vol 258 ◽  
Author(s):  
F.S. Pool ◽  
J.M. Essick ◽  
Y.H. Shing ◽  
R.T. Mather

ABSTRACTThe magnetic field profile of an electron cyclotron resonance (ECR) microwave plasma was systematically altered to determine subsequent effects on a-Si:H film quality. Films of a-Si:H were deposited at pressures of 0.7 mTorr and 5 mTorr with a H2/SiH4 ratio of approximately three. The mobility gap density of states ND, deposition rate and light to dark conductivity were determined for the a-Si:H films. This data was correlated to the magnetic field profile of the plasma, which was characterized by Langmuir probe measurements of the ion current density. By variation of the magnetic field profile ND could be altered by more than an order of magnitude, from 1×1016 to 1×1017 at 0.7 mTorr and 1×1016 to 5×1017 at 5 mTorr. Two deposition regimes were found to occur for the conditions of this study. Highly divergent magnetic fields resulted in poor quality a-Si:H, while for magnetic field profiles defining a more highly confined plasma, the a-Si:H was of device quality and relatively independent of the magnetic field configuration.


1974 ◽  
Vol 52 (22) ◽  
pp. 2246-2249 ◽  
Author(s):  
H. W. H. Van Andel ◽  
M. T. Churchland ◽  
G. Calabrese

A plasma produced by a helical RF structure of the Lisitano type is investigated. Measurements of electron density, electron temperature, and plasma stability are reported as a function of RF frequency and power, magnetic field strength and geometry, and neutral argon pressure. It is concluded that at moderate power (~20 W), electron cyclotron resonance is important in the power absorption process.


2000 ◽  
Vol 71 (2) ◽  
pp. 1113-1115 ◽  
Author(s):  
M. Oyaizu ◽  
E. Tojyo ◽  
S. C. Jeong ◽  
H. Ishiyama ◽  
H. Miyatake ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document