Thermal characterization of three-dimensional printed components for light-emitting diode lighting system applications

2018 ◽  
Vol 57 (04) ◽  
pp. 1
Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1740 ◽  
Author(s):  
Yifeng Fu ◽  
Guofeng Cui ◽  
Kjell Jeppson

The design, fabrication, and use of a hotspot-producing and temperature-sensing resistance thermometer for evaluating the thermal properties of low-dimensional materials are described in this paper. The materials that are characterized include one-dimensional (1D) carbon nanotubes, and two-dimensional (2D) graphene and boron nitride films. The excellent thermal performance of these materials shows great potential for cooling electronic devices and systems such as in three-dimensional (3D) integrated chip-stacks, power amplifiers, and light-emitting diodes. The thermometers are designed to be serpentine-shaped platinum resistors serving both as hotspots and temperature sensors. By using these thermometers, the thermal performance of the abovementioned emerging low-dimensional materials was evaluated with high accuracy.


2011 ◽  
Vol 1288 ◽  
Author(s):  
L. E. Rodak ◽  
K. Lee ◽  
V. Kumbham ◽  
V. Narang ◽  
L. A. Hornak ◽  
...  

ABSTRACTIII-Nitride based Light Emitting Diodes (LEDs) are heavily pursued for various lighting applications due to the ability to engineer the emission through the visible wavelengths by controlling the alloy composition in the multi quantum well. Planar structures are characterized by a Lambertian emission pattern, however, depending on the applications in which the LED is employed, including but not limited to, general lighting, displays, and sensors, the emission profile may need to be more or less directional. As a result, there is significant interest in both improving the efficiency and controlling the emission profile of nitride based devices. Various components such as lenses and photonic crystals are used to improve light extraction and alter the emission profile while growth on semi-polar substrates is being pursued to minimize inherent polarization effects. In this work, curved Gallium Nitride (GaN) structures have been grown utilizing growth kinetics. These as-grown features do not require the extensive additional fabrication and allow for three-dimensional substrates to be employed for LED fabrication. The details of the fabrication and the optical and electrical characterization of Indium Gallium Nitride based LEDs grown on these structures is discussed.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


Author(s):  
J. Zimmer ◽  
D. Nielsen ◽  
T.A. Anderson ◽  
M. Schade ◽  
N. Saha ◽  
...  

Abstract The p-n junction of a GaAs light emitting diode is fabricated using liquid phase epitaxy (LPE). The junction is grown on a Si doped (~1018/cm3) GaAs substrate. Intermittent yield loss due to forward voltage snapback was observed. Historically, out of specification forward voltage (Vf) parameters have been correlated to abnormalities in the junction formation. Scanning electron (SEM) and optical microscopy of cleaved and stained samples revealed a continuous layer of material approximately 2.5 to 3.0 urn thick at the n-epi/substrate interface. Characterization of a defective wafer via secondary ion mass spectroscopy (SIMS) revealed an elevated concentration of O throughout the region containing the defect. X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) data taken from a wafer prior to growth of the epi layers did not reveal any unusual oxidation or contamination. Extensive review of the processing data suggested LPE furnace pressure was the obvious source of variability. Processing wafers through the LPE furnace with a slight positive H2 gas pressure has greatly reduced the occurrence of this defect.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Gianluca Serale ◽  
Luca Gnoli ◽  
Emanuele Giraudo ◽  
Enrico Fabrizio

Artificial lighting systems are used in commercial greenhouses to ensure year-round yields. Current Light Emitting Diode (LED) technologies improved the system efficiency. Nevertheless, having artificial lighting systems extended for hectares with power densities over 50W/m2 causes energy and power demand of greenhouses to be really significant. The present paper introduces an innovative supervisory and predictive control strategy to optimize the energy performance of the artificial lights of greenhouses. The controller has been implemented in a multi-span plastic greenhouse located in North Italy. The proposed control strategy has been tested on a greenhouse of 1 hectare with a lighting system with a nominal power density of 50 Wm−2 requiring an overall power supply of 1 MW for a period of 80 days. The results have been compared with the data coming from another greenhouse of 1 hectare in the same conditions implementing a state-of-the-art strategy for artificial lighting control. Results outlines that potential 19.4% cost savings are achievable. Moreover, the algorithm can be used to transform the greenhouse in a viable source of energy flexibility for grid reliability.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 725
Author(s):  
Saeyeong Jeon ◽  
Youjin Lee ◽  
Daeho Ryu ◽  
Yoon Kyung Cho ◽  
Yena Lee ◽  
...  

During the last decade, optogenetics has become an essential tool for neuroscience research due to its unrivaled feature of cell-type-specific neuromodulation. There have been several technological advances in light delivery devices. Among them, the combination of optogenetics and electrophysiology provides an opportunity for facilitating optogenetic approaches. In this study, a novel design of an optrode array was proposed for realizing optical modulation and electrophysiological recording. A 4 × 4 optrode array and five-channel recording electrodes were assembled as a disposable part, while a reusable part comprised an LED (light-emitting diode) source and a power line. After the characterization of the intensity of the light delivered at the fiber tips, in vivo animal experiment was performed with transgenic mice expressing channelrhodopsin, showing the effectiveness of optical activation and neural recording.


Sign in / Sign up

Export Citation Format

Share Document