scholarly journals Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

Author(s):  
J. Brunker ◽  
P. Beard
2013 ◽  
Vol 35 (3) ◽  
Author(s):  
Tat Thang Nguyen ◽  
Hiroshige Kikura ◽  
Ngoc Hai Duong ◽  
Hideki Murakawa ◽  
Nobuyoshi Tsuzuki

Ultrasonic Velocity Profile (UVP) method for measurement of single-phase and two-phase flow in a vertical pipe has recently been developed in the Laboratory for industrial and Environmental Fluid Dynamics, Institute of Mechanics, VAST. The signal processings of the UVP method include the ultrasonic pulse Doppler method (UDM)and the ultrasonic time-domain cross-correlation (UTDC) method. For two-phase flow, simultaneous measurements of both liquid and gas are enabled by using a multi-wave ultrasonic transducer (multi-wave TDX). The multi-wave TDX is able to emit and receive ultrasound of two different center frequencies of 2 MHz and 8 MHz at the same time and position. 2 MHz frequency with beam diameter 10 mm is exploited for measurement of gas. 8 MHz one with beam diameter 3 mm is used for liquid. Measurements have been carried out for laminar and turbulent single-phase flows and bubbly counter-current two-phase flows in two flow loops using two vertical pipes of 26 mm inner diameter (I.D.) and 50 mm I.D. respectively. Based on the measured results, assessment of each method is clarified. Applicability of each method for different conditions of pipe flow has been tested. Suggestions for application of the two methods have been recommended.


1999 ◽  
Vol 170 ◽  
pp. 325-330
Author(s):  
B. Khalesseh

AbstractNew radial velocity measurements of the Algol-type eclipsing binary BD +52 °2009, based on Reticon observations, are presented. The velocity measures are based on fitting theoretical profiles, generated by a physical model of the binary, to the observed cross-correlation function (ccf). Such profiles match this function very well, much better in fact than Gaussian profiles, which are generally used. Measuring the ccf’s with Gaussian profiles yields the following results: mp sin3i = 2.55 ± 0.05m⊙, ms sin3i = 1.14 ± 0.03m⊙, (ap + as) sin i = 7.34 ± 0.05R⊙, and mp/ms = 2.23 ± 0.05. However, measuring the ccf’s with theoretical profiles yields a mass ratio of 2.33 and following results: mp sin3i = 2.84 ± 0.05m⊙, ms sin3i = 1.22 ± 0.03m⊙, (ap + as) sin i = 7.56 ± 0.05R⊙. The system has a semi-detached configuration. By combining the solution of a previously published light curve with the spectroscopic orbit, one can obtain the following physical parameters: mp = 2.99m⊙, ms3 = 1.28m⊙, < Tp >= 9600K, < Ts >= 5400K, < Rp >= 2.35R⊙, < Rs >= 2.12R⊙. The system consists of an A0 primary and a G2 secondary.


Geophysics ◽  
2021 ◽  
pp. 1-147
Author(s):  
Peng Yong ◽  
Romain Brossier ◽  
Ludovic Métivier

In order to exploit Hessian information in Full Waveform Inversion (FWI), the matrix-free truncated Newton method can be used. In such a method, Hessian-vector product computation is one of the major concerns due to the huge memory requirements and demanding computational cost. Using the adjoint-state method, the Hessian-vector product can be estimated by zero-lag cross-correlation of the first-order/second-order incident wavefields and the second-order/first-order adjoint wavefields. Different from the implementation in frequency-domain FWI, Hessian-vector product construction in the time domain becomes much more challenging as it is not affordable to store the entire time-dependent wavefields. The widely used wavefield recomputation strategy leads to computationally intensive tasks. We present an efficient alternative approach to computing the Hessian-vector product for time-domain FWI. In our method, discrete Fourier transform is applied to extract frequency-domain components of involved wavefields, which are used to compute wavefield cross-correlation in the frequency domain. This makes it possible to avoid reconstructing the first-order and second-order incident wavefields. In addition, a full-scattered-field approximation is proposed to efficiently simplify the second-order incident and adjoint wavefields computation, which enables us to refrain from repeatedly solving the first-order incident and adjoint equations for the second-order incident and adjoint wavefields (re)computation. With the proposed method, the computational time can be reduced by 70% and 80% in viscous media for Gauss-Newton and full-Newton Hessian-vector product construction, respectively. The effectiveness of our method is also verified in the frame of a 2D multi-parameter inversion, in which the proposed method almost reaches the same iterative convergence of the conventional time-domain implementation.


Sign in / Sign up

Export Citation Format

Share Document