An experimental investigation on the influence of machining parameters on surface finish in diamond turning of silicon optics

Author(s):  
Neha Khatri ◽  
Rohit Sharma ◽  
Vinod Mishra ◽  
Mukesh Kumar ◽  
Vinod Karar ◽  
...  
2015 ◽  
Vol 828-829 ◽  
pp. 62-68
Author(s):  
Khaled Abou-El-Hossein

Plastic optical components and lenses produced in mass quantities are usually manufactured using high-precision plastic injection technology. For that, high-precision plastic moulds with aluminium optical inserts made with extremely high dimension accuracy and high optical surface quality are used. Ultra-high precision single-point diamond turning have been successfully used in shaping optical mould inserts from various aluminium grades such as traditional 6061. However, extreme care should be taking when selecting machining parameters in order to produce optically valid surfaces before premature tool wear takes place especially when the machined optical materials has inadequate machining database. The current experimental study looks at the effect of cutting conditions on optical surfaces made from aluminium. The study embarks on helping establish some diamond machining database that helps engineers select the most favourable cutting parameters. The papers reports on the accuracy and surface finish quality received on an optical surface made on mould inserts from a newly developed aluminium alloy. Rapidly solidified aluminium (RSA) grades have been developed recently to address the various problems encountered when being cut by single-point diamond turning operation. The material is characterised by its extremely fine grained microstructure which helps extend the tool life and produce optical surfaces with nanometric surface finish. It is found the RSA grades can be successfully used to replace traditional optical aluminium grades when making optical surfaces. Surface finishes of as low as 10 nanometres and form accuracy of less than one micron can be achieved on RSA.


2014 ◽  
Vol 30 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Vinod Mishra ◽  
Neha Khatri ◽  
Keshva Nand ◽  
Karanvir Singh ◽  
RamaGopal V Sarepaka

Measurement ◽  
2014 ◽  
Vol 55 ◽  
pp. 353-361 ◽  
Author(s):  
Vinod Mishra ◽  
Gufran S. Khan ◽  
K.D. Chattopadhyay ◽  
Keshva Nand ◽  
RamaGopal V. Sarepaka

2020 ◽  
pp. 251659842094172
Author(s):  
Kuldeep A. Mahajan ◽  
Raju Pawade

Single-point diamond turning (SPDT) is an emerging process for achieving nanometric surface finish, required in various optical devices made from metals like aluminum, copper, and nonmetals like polymers. The optical devices are manufactured in different shapes and profiles, preferably flat and curved surfaces. During the manufacturing of optical devices, controllable and noncontrollable parameters affect the desired surface finish. In this article, controllable machining parameters such as the incremental distance of X slide, feed rate, spindle speed, and depth of cut are selected to study their effect on surface finish and vibration generation of the curved surface. The chosen workpiece material is polymethylmethacrylate (PMMA). Design of experiment (DoE) is used to find out the optimum parameters of surface finish and infeed vibration responses. According to the Taguchi and analysis of Variance (ANOVA) analysis, the feed rate is the most influencing parameter for surface roughness, and incremental distance is for infeed vibration. A confirmation test is carried out to verify the experimental responses with a mathematical regression model, and it shows a close difference within 2.7 percent. Further, minimum surface roughness is perceived as 12.4 nm, corresponding to an infeed vibration amplitude of 4.9 µm/s2, which is signified at a lower frequency.


2021 ◽  
Author(s):  
Adeniyi Adeleke ◽  
Abou-El-Hossein Khaled ◽  
Odedeyi Peter

Abstract The desire for quality infrared lens with better surface finish has brought about the usage of brittle materials like germanium to be machined via a single point diamond turning machining process. However, achieving the required surface finish is complex if special machining techniques and approaches are not employed. In this paper, the effect of two different tool nose radius parameters on surface roughness of single point diamond turned germanium workpiece were studied and analyzed. The machining parameters selected for this experiment were feed, speed and depth of cut. Box-Behnken design was adopted to optimally create a combination of cutting parameters. Measurement of surface roughness after each run in both experiments was achieved using a Taylor Hobson PGI Dimension XL surface Profilometer. The resulting outcomes show that at most experimental runs, the surface roughness value decreased with an increase in nose radius. Mean absolute error was also used to compare the accuracy validation of the two models.


Author(s):  
LJ. Tanovic ◽  
P. Bojanic ◽  
R. Puzovic ◽  
S. Klimenko

This paper offers an experimental study of the microcutting mechanisms in marble grinding to aid the optimization of the marble grinding process. The necessity for investigating these mechanisms is dictated by the increased use of marble in many applications and the fact that grinding and polishing processes are the dominant technologies used to meet surface finish requirements in this natural material. The experiments are aimed at the determination of the normal component of the cutting force and of the grain traces in microcutting with a single diamond grain. The investigations carried out make provisions for establishing critical grain penetration and cutting depths and allow the prediction of the normal cutting force component as a function of grain penetration speed and depth.


2012 ◽  
Vol 576 ◽  
pp. 41-45
Author(s):  
A.K.M. Nurul Amin ◽  
M.A. Mahmud ◽  
M.D. Arif

The majority of semiconductor devices are made up of silicon wafers. Manufacturing of high-quality silicon wafers includes numerous machining processes, including end milling. In order to end mill silicon to a nano-meteric surface finish, it is crucial to determine the effect of machining parameters, which influence the machining transition from brittle to ductile mode. Thus, this paper presents a novel experimental technique to study the effects of machining parameters in high speed end milling of silicon. The application of compressed air, in order to blow away the chips formed, is also investigated. The machining parameters’ ranges which facilitate the transition from brittle to ductile mode cutting as well as enable the attainment of high quality surface finish and integrity are identified. Mathematical model of the response parameter, the average surface roughness (Ra) is subsequently developed using RSM in terms of the machining parameters. The model was determined, by Analysis of Variance (ANOVA), to have a confidence level of 95%. The experimental results show that the developed mathematical model can effectively describe the performance indicators within the controlled limits of the factors that are being considered.


Sign in / Sign up

Export Citation Format

Share Document