Theoretical simulation of the long-wave HgCdTe detector for ultra fast response-operating under zero bias condition and room temperature

Author(s):  
Piotr Martyniuk ◽  
Paweł Madejczyk ◽  
Jarosław Rutkowski
2017 ◽  
Vol 24 (4) ◽  
pp. 729-738
Author(s):  
Piotr Martyniuk ◽  
Małgorzata Kopytko ◽  
Paweł Madejczyk ◽  
Aleksandra Henig ◽  
Kacper Grodecki ◽  
...  

AbstractThe paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd= 0.19) HgCdTe detector for 300 K was calculated at a level of τs~ 1 ns for zero bias condition, while the detectivity − at a level of D* ~ 109cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+barrier layer play a critical role in order to reach τs≤ 1 ns. An extra series resistance related to the processing (RS+in a range 5−10 Ω) increased the response time more than two times (τs ~ 2.3 ns).


2021 ◽  
pp. 149619
Author(s):  
Manni Chen ◽  
Zhipeng Zhang ◽  
Runze Zhan ◽  
Juncong She ◽  
Shaozhi Deng ◽  
...  

2020 ◽  
Vol 8 (35) ◽  
pp. 12148-12154 ◽  
Author(s):  
Yifan Li ◽  
Yating Zhang ◽  
Tengteng Li ◽  
Xin Tang ◽  
Mengyao Li ◽  
...  

A novel self-powered NIR and THz PTE PD based on a (MAPbI3/PEDOT:PSS) composite with a rapid response time of 28 μs.


2015 ◽  
Vol 7 (34) ◽  
pp. 19163-19171 ◽  
Author(s):  
Dian-Xing Ju ◽  
Hong-Yan Xu ◽  
Zhi-Wen Qiu ◽  
Zi-Chao Zhang ◽  
Qi Xu ◽  
...  

Author(s):  
Monika Kwoka ◽  
Michal A. Borysiewicz ◽  
Pawel Tomkiewicz ◽  
Anna Piotrowska ◽  
Jacek Szuber

In this paper a novel type of a highly sensitive gas sensor device based on the surface photovoltage effect is described. The developed surface photovoltage gas sensor is based on a reverse Kelvin probe approach. As the active gas sensing electrode the porous ZnO nanostructured thin films are used deposited by the direct current (DC) reactive magnetron sputtering method exhibiting the nanocoral surface morphology combined with an evident surface nonstoichiometry related to the unintentional surface carbon and water vapor contaminations. Among others, the demonstrated SPV gas sensor device exhibits a high sensitivity of 1 ppm to NO2 with a signal to noise ratio of about 50 and a fast response time of several seconds under the room temperature conditions.


2011 ◽  
Vol 128-129 ◽  
pp. 607-610
Author(s):  
Min Wang ◽  
Jie Chen ◽  
Niu Liu ◽  
Ya Wang

Mid-infrared lasers are very suitable for high-sensitive trace-gases detection for their wavelengths cover the fundamental absorption lines of most gases. Quantum-cascade (QC) lasers have been demonstrated to be ideal light sources with its special power, tuning and capability of operating in room-temperature. All these merits make it appropriate for the high resolution spectrum analysis. The absorption spectrum monitoring technology based on the QC laser pulsed operating in the room temperature, combining with the strong absorption of the gas molecule in the basic frequency, has become an effective way to monitor the trace gas with the characteristic of high sensitivity, good selectivity and fast response. In this paper, the inter-pulse spectroscopy based on a room-temperature distributed-feedback pulsed QC laser was introduced. Our approach to trace gas monitoring with QC lasers relies on short current pulses which are designed to produce even shorter light pulses. Each pulse corresponds to a single point in a spectrum. The N2O absorption spectrum centered at 2178.2cm-1was also obtained.


2019 ◽  
Vol 465 ◽  
pp. 56-66 ◽  
Author(s):  
Aviru Kumar Basu ◽  
Pankaj Singh Chauhan ◽  
Mohit Awasthi ◽  
Shantanu Bhattacharya

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5215 ◽  
Author(s):  
Hanan Abdali ◽  
Bentolhoda Heli ◽  
Abdellah Ajji

A nanocomposite of cross-linked bacterial cellulose–amino graphene/polyaniline (CLBC-AmG/PANI) was synthesized by covalent interaction of amino-functionalized graphene (AmG) AmG and bacterial cellulose (BC) via one step esterification, and then the aniline monomer was grown on the surface of CLBC-AmG through in situ chemical polymerization. The morphological structure and properties of the samples were characterized by using scanning electron microscopy (SEM), and thermal gravimetric analyzer (TGA). The CLBC-AmG/PANI showed good electrical-resistance response toward carbon dioxide (CO2) at room temperature, compared to the BC/PANI nanopaper composites. The CLBC-AmG/PANI sensor possesses high sensitivity and fast response characteristics over CO2 concentrations ranging from 50 to 2000 ppm. This process presents an extremely suitable candidate for developing novel nanomaterials sensors owing to easy fabrication and efficient sensing performance.


Sign in / Sign up

Export Citation Format

Share Document