Readout of a prototype CBM-STS silicon sensor module with STS-XYTERv2 ASIC

Author(s):  
O. Maragoto Rodriguez ◽  
D. Emschermann ◽  
J. M. Heuser ◽  
J. Lehnert ◽  
P. A. Loizeau ◽  
...  
Keyword(s):  
2017 ◽  
Vol 137 (2) ◽  
pp. 48-58
Author(s):  
Noriyuki Fujimori ◽  
Takatoshi Igarashi ◽  
Takahiro Shimohata ◽  
Takuro Suyama ◽  
Kazuhiro Yoshida ◽  
...  

Author(s):  
Preeti Kumari ◽  
◽  
Kavita Lalwani ◽  
Ranjit Dalal ◽  
Ashutosh Bhardwaj ◽  
...  

2021 ◽  
Vol 16 (08) ◽  
pp. P08009
Author(s):  
K. Heijhoff ◽  
K. Akiba ◽  
R. Bates ◽  
M. van Beuzekom ◽  
P. Bosch ◽  
...  
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 861
Author(s):  
Kyeung Ho Kang ◽  
Mingu Kang ◽  
Siho Shin ◽  
Jaehyo Jung ◽  
Meina Li

Chronic diseases, such as coronary artery disease and diabetes, are caused by inadequate physical activity and are the leading cause of increasing mortality and morbidity rates. Direct calorimetry by calorie production and indirect calorimetry by energy expenditure (EE) has been regarded as the best method for estimating the physical activity and EE. However, this method is inconvenient, owing to the use of an oxygen respiration measurement mask. In this study, we propose a model that estimates physical activity EE using an ensemble model that combines artificial neural networks and genetic algorithms using the data acquired from patch-type sensors. The proposed ensemble model achieved an accuracy of more than 92% (Root Mean Squared Error (RMSE) = 0.1893, R2 = 0.91, Mean Squared Error (MSE) = 0.014213, Mean Absolute Error (MAE) = 0.14020) by testing various structures through repeated experiments.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1936
Author(s):  
Tsun-Kuang Chi ◽  
Hsiao-Chi Chen ◽  
Shih-Lun Chen ◽  
Patricia Angela R. Abu

In this paper, a novel self-optimizing water level monitoring methodology is proposed for smart city applications. Considering system maintenance, the efficiency of power consumption and accuracy will be important for Internet of Things (IoT) devices and systems. A multi-step measurement mechanism and power self-charging process are proposed in this study for improving the efficiency of a device for water level monitoring applications. The proposed methodology improved accuracy by 0.16–0.39% by moving the sensor to estimate the distance relative to different locations. Additional power is generated by executing a multi-step measurement while the power self-optimizing process used dynamically adjusts the settings to balance the current of charging and discharging. The battery level can efficiently go over 50% in a stable charging simulation. These methodologies were successfully implemented using an embedded control device, an ultrasonic sensor module, a LORA transmission module, and a stepper motor. According to the experimental results, the proposed multi-step methodology has the benefits of high accuracy and efficient power consumption for water level monitoring applications.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 661
Author(s):  
Martin Meiller ◽  
Jürgen Oischinger ◽  
Robert Daschner ◽  
Andreas Hornung

The heterogeneity of biogenic fuels, and especially biogenic residues with regard to water and ash content, particle size and particle size distribution is challenging for biomass combustion, and limits fuel flexibility. Online fuel characterization as a part of process control could help to optimize combustion processes, increase fuel flexibility and reduce emissions. In this research article, a concept for a new sensor module is presented and first tests are displayed to show its feasibility. The concept is based on the principle of hot air convective drying. The idea is to pass warm air with 90 °C through a bulk of fuel like wood chips and measure different characteristics such as moisture, temperatures and pressure drop over the bulk material as a function over time. These functions are the basis to draw conclusions and estimate relevant fuel properties. To achieve this goal, a test rig with a volume of 0.038 m3 was set up in the laboratory and a series of tests was performed with different fuels (wood chips, saw dust, wood pellets, residues from forestry, corn cobs and biochar). Further tests were carried out with conditioned fuels with defined water and fines contents. The experiments show that characteristic functions arise over time. The central task for the future will be to assign these functions to specific fuel characteristics. Based on the data, the concept for a software for an automated, data-based fuel detection system was designed.


2020 ◽  
Vol 11 (1) ◽  
pp. 298
Author(s):  
Youchung Chung

In this paper, an inverted F type antenna (IFA) for ZigBee communication of a sensor board has been designed and optimized, and it replaces the chip antenna on an RF (Radio Frequency) module that is not performing well enough for the ZigBee communication. The sensor board detects cattle behavior and identifies the breeding (estrus) period and transmits the data to the main station by the RF (Radio Frequency) module and IFA antenna. The proposed and optimized TRx (transmitting/receiving) IFA antenna of the ZigBee communication module has a return loss of −19 dB and a gain of 1.6 dB at 2.45 GHz. The size is about 2.5 × 0.5 cm in width and vertical length, and the height is 0.55 cm. The strength of signals with the chip antenna and the IFA antenna have been measured and compared. There is about a 20 dB enhancement with the IFA antenna compared to the chip antenna. The antenna is designed and applied to the RF transmission and reception (TRx) module. This antenna and sensor module can be applied to livestock in general as well as cattle.


Author(s):  
Charles Atombo ◽  
Emmanuel Gbey ◽  
Apevienyeku Kwami Holali

Abstract Traffic accidents on highways are attributed mostly to the "invisibility" of oncoming traffic and road signs. "Speeding" also causes drivers to reduce the effective radius of the vehicle path in the curve, thus trespassing into the lane of the oncoming traffic. The main aim of this paper was to develop a multisensory obstacle-detection device that is affordable, easy to implement and easy to maintain to reduce the risk of road accidents at blind corners. An ultrasonic sensor module with a maximum measuring angle of 15° was used to ensure that a significant portion of the lane was detected at the blind corner. The sensor covered a minimum effective area of 0.5 m2 of the road for obstacle detection. Yellow light was employed to signify caution while negotiating the blind corner. Two photoresistors (PRs) were used as sensors because of the limited number of pins on the microcontroller (Arduino Uno). However, the device developed for this project achieved obstacle detection at blind corners at relatively low cost and can be accessed by all road users. In real-world applications, the use of piezoelectric accelerometers (vibration sensors) instead of PR sensors would be more desirable in order to detect not only cars but also two-wheelers.


Sign in / Sign up

Export Citation Format

Share Document