Improving the technological readiness level of of Laue lens optics (Conference Presentation)

Author(s):  
Enrico Virgilli ◽  
Natalia Auricchio ◽  
Claudio Ferrari ◽  
Filippo Frontera ◽  
Ezio Caroli ◽  
...  

Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 68
Author(s):  
Juan D. Borrero

Climate and social changes are deeply affecting current agro-food systems. Unsustainable agricultural practices and the low profitability of small farmers are challenging the agricultural development of rural areas. This study aims to develop a novel, modular and low-cost vertical hydroponic farm system through reviews of the patented literature, research literature and variants of commercial products. After a detailed conceptualization process, a prototype was fabricated and tested at my university to validate its technology readiness level (TRL). The outcomes supported the usability and performance of the present utility model but highlighted several changes that are necessary before it can pass to the next TRL. This study shows that the prototype has the potential to not only solve food sovereignty but also to benefit society by advancing the innovations in food production and improving quality of life.



Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3071 ◽  
Author(s):  
Umit Bilge Demirci

Ammonia borane H3N−BH3 (AB) was re-discovered, in the 2000s, to play an important role in the developing hydrogen economy, but it has seemingly failed; at best it has lagged behind. The present review aims at analyzing, in the context of more than 300 articles, the reasons why AB gives a sense that it has failed as an anodic fuel, a liquid-state hydrogen carrier and a solid hydrogen carrier. The key issues AB faces and the key challenges ahead it has to address (i.e., those hindering its technological deployment) have been identified and itemized. The reality is that preventable errors have been made. First, some critical issues have been underestimated and thereby understudied, whereas others have been disproportionally considered. Second, the potential of AB has been overestimated, and there has been an undoubted lack of realistic and practical vision of it. Third, the competition in the field is severe, with more promising and cheaper hydrides in front of AB. Fourth, AB has been confined to lab benches, and consequently its technological readiness level has remained low. This is discussed in detail herein.



Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 48 ◽  
Author(s):  
Pinar Boyraz ◽  
Gundula Runge ◽  
Annika Raatz

In this systematic survey, an overview of non-conventional actuators particularly used in soft-robotics is presented. The review is performed by using well-defined performance criteria with a direction to identify the exemplary and potential applications. In addition to this, initial guidelines to compare the performance and applicability of these novel actuators are provided. The meta-analysis is restricted to five main types of actuators: shape memory alloys (SMAs), fluidic elastomer actuators (FEAs), shape morphing polymers (SMPs), dielectric electro-activated polymers (DEAPs), and magnetic/electro-magnetic actuators (E/MAs). In exploring and comparing the capabilities of these actuators, the focus was on eight different aspects: compliance, topology-geometry, scalability-complexity, energy efficiency, operation range, modality, controllability, and technological readiness level (TRL). The overview presented here provides a state-of-the-art summary of the advancements and can help researchers to select the most convenient soft actuators using the comprehensive comparison of the suggested quantitative and qualitative criteria.



Author(s):  
Stefan Müller ◽  
Lara Theiss ◽  
Benjamin Fleiß ◽  
Martin Hammerschmid ◽  
Josef Fuchs ◽  
...  

Abstract The present work describes the results achieved during a study aiming at the full replacement of the natural gas demand of an integrated hot metal production. This work implements a novel approach using a biomass gasification plant combined with an electrolysis unit to substitute the present natural gas demand of an integrated hot metal production. Therefore, a simulation platform, including mathematical models for all relevant process units, enabling the calculation of all relevant mass and energy balances was created. As a result, the calculations show that a natural gas demand of about 385 MW can be replaced and an additional 100 MW hydrogen-rich reducing gas can be produced by the use of 132 MW of biomass together with 571 MW electricity produced from renewable energy. The results achieved indicate that a full replacement of the natural gas demand would be possible from a technological point of view. At the same time, the technological readiness level of available electrolysis units shows that a production at such a large scale has not been demonstrated yet.





Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2528 ◽  
Author(s):  
Pål-Tore Storli ◽  
T. Staffan Lundström

A new degree of freedom in water management is presented here. This is obtained by displacing water, and in this paper is conceptually explained by two methods: using an excavated cavern as a container for compressed air to displace water, and using inflatable balloons. The concepts might have a large impact on a variety of water management applications, ranging from mitigating discharge fluctuation in rivers to flood control, energy storage applications and disease-reduction measures. Currently at a low technological readiness level, the concepts require further research and development, but the authors see no technical challenges related to these concepts. The reader is encouraged to use the ideas within this paper to find new applications and to continue the out-of-the-box thinking initiated by the ideas presented in this paper.



Author(s):  
Pinar Boyraz ◽  
Gundula Runge ◽  
Annika Raatz

In this systematic survey, an overview of non-conventional and soft-actuators is presented. The review is performed by using well-defined performance criteria with a direction to identify the exemplary applications in robotics. In addition to this, initial guidelines to measure the performance and applicability of soft actuators are provided. The meta-analysis is restricted to four main types of soft actuators: shape memory alloys (SMA), fluidic elastomer actuators (FEA), dielectric electro-activated polymers (DEAP) and shape morphing polymers (SMP). In exploring and comparing the capabilities of these actuators, the focus was on seven different aspects: compliance, topology, scalability-complexity, energy efficiency, operation range, performance and technological readiness level. The overview presented here provides a state-of-the-art summary of the advancements and can help researchers to select the most convenient soft actuators using the comprehensive comparison of the performance criteria.



2020 ◽  
Vol 6 (1-2) ◽  
pp. 88-99
Author(s):  
A. N. Petrov ◽  
A. V. Komarov

The article describes a model for assessing the level of technological readiness of projects submitted to the competition for funding, built using the TPRL methodology. The model can be used along with other tools for evaluating competitive applications to increase the accuracy and objectivity of the expert evaluation of competitive projects. Based on the results obtained using the proposed model, ranked lists of participating projects can be compiled for the subsequent selection of winning projects. The developed model for assessing the level of technology development hasbeen tested for projects of the federal target program «Research and Development in Priority Directions for the Development of the Russian Scientific and Technological Complex for 2014-2020».



Sign in / Sign up

Export Citation Format

Share Document