Adversarial robustness of machine learning-based indoor positioning systems

Author(s):  
Peter Swartz ◽  
Kevin Hobbs ◽  
Levi Hancock ◽  
Raed Salih ◽  
Michael R. Clark

2019 ◽  
Vol 9 (6) ◽  
pp. 1048 ◽  
Author(s):  
Huy Tran ◽  
Cheolkeun Ha

Recently, indoor positioning systems have attracted a great deal of research attention, as they have a variety of applications in the fields of science and industry. In this study, we propose an innovative and easily implemented solution for indoor positioning. The solution is based on an indoor visible light positioning system and dual-function machine learning (ML) algorithms. Our solution increases positioning accuracy under the negative effect of multipath reflections and decreases the computational time for ML algorithms. Initially, we perform a noise reduction process to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of the room into two separate areas using the ML classification function. This significantly reduces the computational time and partially improves the positioning accuracy of our system. Finally, the regression function of those ML algorithms is applied to predict the location of the optical receiver. By using extensive computer simulations, we have demonstrated that the execution time required by certain dual-function algorithms to determine indoor positioning is decreased after area division and noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and provided a 52.55% improvement in positioning accuracy.



2019 ◽  
Vol 9 (18) ◽  
pp. 3665 ◽  
Author(s):  
Ahmet Çağdaş Seçkin ◽  
Aysun Coşkun

Wi-Fi-based indoor positioning offers significant opportunities for numerous applications. Examining the Wi-Fi positioning systems, it was observed that hundreds of variables were used even when variable reduction was applied. This reveals a structure that is difficult to repeat and is far from producing a common solution for real-life applications. It aims to create a common and standardized dataset for indoor positioning and localization and present a system that can perform estimations using this dataset. To that end, machine learning (ML) methods are compared and the results of successful methods with hierarchical inclusion are then investigated. Further, new features are generated according to the measurement point obtained from the dataset. Subsequently, learning models are selected according to the performance metrics for the estimation of location and position. These learning models are then fused hierarchically using deductive reasoning. Using the proposed method, estimation of location and position has proved to be more successful by using fewer variables than the current studies. This paper, thus, identifies a lack of applicability present in the research community and solves it using the proposed method. It suggests that the proposed method results in a significant improvement for the estimation of floor and longitude.



Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 778
Author(s):  
Stef Vandermeeren ◽  
Herwig Bruneel ◽  
Heidi Steendam

An accurate step length estimation can provide valuable information to different applications such as indoor positioning systems or it can be helpful when analyzing the gait of a user, which can then be used to detect various gait impairments that lead to a reduced step length (caused by e.g., Parkinson’s disease or multiple sclerosis). In this paper, we focus on the estimation of the step length using machine learning techniques that could be used in an indoor positioning system. Previous step length algorithms tried to model the length of a step based on measurements from the accelerometer and some tuneable (user-specific) parameters. Machine-learning-based step length estimation algorithms eliminate these parameters to be tuned. Instead, to adapt these algorithms to different users, it suffices to provide examples of the length of multiple steps for different persons to the machine learning algorithm, so that in the training phase the algorithm can learn to predict the step length for different users. Until now, these machine learning algorithms were trained with features that were chosen intuitively. In this paper, we consider a systematic feature selection algorithm to be able to determine the features from a large collection of features, resulting in the best performance. This resulted in a step length estimator with a mean absolute error of 3.48 cm for a known test person and 4.19 cm for an unknown test person, while current state-of-the-art machine-learning-based step length estimators resulted in a mean absolute error of 4.94 cm and 6.27 cm for respectively a known and unknown test person.



2018 ◽  
Vol 27 (05) ◽  
pp. 1850018 ◽  
Author(s):  
Ahmet Yazıcı ◽  
Sinem Bozkurt Keser ◽  
Serkan Günal ◽  
Uğur Yayan

Indoor positioning system is an active research area. There are various performance metrics such as accuracy, computation time, precision, and f-score in machine learning based indoor positioning systems. The aim of this study is to present a multi-criteria decision strategy to determine suitable machine learning methods for a specific indoor positioning system. This helps to evaluate the performance of machine learning algorithms considering multiple criteria. During the experiments, UJIIndoorLoc, KIOS and RFKON datasets are used from the positioning literature. The algorithms such as k-nearest neighbor, support vector machine, decision tree, naïve bayes and bayesian networks are compared using these datasets. In addition to these, ensemble learning algorithms, namely adaboost and bagging, are utilized to improve the performance of these classifiers. As a conclusion, the test results for any specific dataset are reevaluated using the performance metrics such as accuracy, f-score and computation time, and a multi-criteria decision strategy is proposed to find the most convenient algorithm. The analytical hierarchy process is used for multi-criteria decision. To the best of our knowledge, this is the first work to select the proper machine learning algorithm for an indoor positioning system using multi-criteria decision strategy.



2021 ◽  
Vol 5 (1) ◽  
pp. 60-72
Author(s):  
Mohammed Yaseen Taha ◽  
Qahhar Muhammad Qadir

With the advent of Industry 4.0, the trend of its implementation in current factories has increased tremendously. Using autonomous mobile robots that are capable of navigating and handling material in a warehouse is one of the important pillars to convert the current warehouse inventory control to more automated and smart processes to be aligned with Industry 4.0 needs. Navigating a robot’s indoor positioning in addition to finding materials are examples of location-based services (LBS), and are some major aspects of Industry 4.0 implementation in warehouses that should be considered. Global positioning satellites (GPS) are accurate and reliable for outdoor navigation and positioning while they are not suitable for indoor use. Indoor positioning systems (IPS) have been proposed in order to overcome this shortcoming and extend this valuable service to indoor navigation and positioning. This paper proposes a simple, cost effective and easily configurable indoor navigation system with the help of an optical path following, unmanned ground vehicle (UGV) robot augmented by image processing and computer vision deep machine learning algorithms. The proposed system prototype is capable of navigating in a warehouse as an example of an indoor area, by tracking and following a predefined traced path that covers all inventory zones in a warehouse, through the usage of infrared reflective sensors that can detect black traced path lines on bright ground. As metionded before, this general navigation mechanism is augmented and enhanced by artificial intelligence (AI) computer vision tasks to be able to select the path to the required inventory zone as its destination, and locate the requested material within this inventory zone. The adopted AI computer vision tasks that are used in the proposed prototype are deep machine learning object recognition algorithms for path selection and quick response (QR) detection.



Author(s):  
F.Y. Che ◽  
B. Hussain ◽  
K.J. Qiu ◽  
M. Liu ◽  
L. Wu ◽  
...  


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3701
Author(s):  
Ju-Hyeon Seong ◽  
Soo-Hwan Lee ◽  
Won-Yeol Kim ◽  
Dong-Hoan Seo

Wi-Fi round-trip timing (RTT) was applied to indoor positioning systems based on distance estimation. RTT has a higher reception instability than the received signal strength indicator (RSSI)-based fingerprint in non-line-of-sight (NLOS) environments with many obstacles, resulting in large positioning errors due to multipath fading. To solve these problems, in this paper, we propose high-precision RTT-based indoor positioning system using an RTT compensation distance network (RCDN) and a region proposal network (RPN). The proposed method consists of a CNN-based RCDN for improving the prediction accuracy and learning rate of the received distances and a recurrent neural network-based RPN for real-time positioning, implemented in an end-to-end manner. The proposed RCDN collects and corrects a stable and reliable distance prediction value from each RTT transmitter by applying a scanning step to increase the reception rate of the TOF-based RTT with unstable reception. In addition, the user location is derived using the fingerprint-based location determination method through the RPN in which division processing is applied to the distances of the RTT corrected in the RCDN using the characteristics of the fast-sampling period.



Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 798
Author(s):  
Hamed Darbandi ◽  
Filipe Serra Bragança ◽  
Berend Jan van der Zwaag ◽  
John Voskamp ◽  
Annik Imogen Gmel ◽  
...  

Speed is an essential parameter in biomechanical analysis and general locomotion research. It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumulate during IMU signals integration. In an attempt to overcome these issues, we have investigated the possibility of estimating the horse speed by developing machine learning (ML) models using the signals from seven body-mounted IMUs. Since motion patterns extracted from IMU signals are different between breeds and gaits, we trained the models based on data from 40 Icelandic and Franches-Montagnes horses during walk, trot, tölt, pace, and canter. In addition, we studied the estimation accuracy between IMU locations on the body (sacrum, withers, head, and limbs). The models were evaluated per gait and were compared between ML algorithms and IMU location. The model yielded the highest estimation accuracy of speed (RMSE = 0.25 m/s) within equine and most of human speed estimation literature. In conclusion, highly accurate horse speed estimation models, independent of IMU(s) location on-body and gait, were developed using ML.



Sign in / Sign up

Export Citation Format

Share Document