Regional and global lightning activity effect on the composition and properties of the upper troposphere/lower stratosphere

2021 ◽  
Author(s):  
Ludmila Kolomeets ◽  
Sergei P. Smyshlyaev
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jiali Luo ◽  
Jiayao Song ◽  
Hongying Tian ◽  
Lei Liu ◽  
Xinlei Liang

We use ERA-Interim reanalysis, MLS observations, and a trajectory model to examine the chemical transport and tracers distribution in the Upper Troposphere and Lower Stratosphere (UTLS) associated with an east-west oscillation case of the anticyclone in 2016. The results show that the spatial distribution of water vapor (H2O) was more consistent with the location of the anticyclone than carbon monoxide (CO) at 100 hPa, and an independent relative high concentration center was only found in H2O field. At 215 hPa, although the anticyclone center also migrated from the Tibetan Mode (TM) to the Iranian Mode (IM), the relative high concentration centers of both tracers were always colocated with regions where upward motion was strong in the UTLS. When the anticyclone migrated from the TM, air within the anticyclone over Tibetan Plateau may transport both westward and eastward but was always within the UTLS. The relative high concentration of tropospheric tracers within the anticyclone in the IM was from the east and transported by the westward propagation of the anticyclone rather than being lifted from surface directly. Air within the relative high geopotential height centers over Western Pacific was partly from the main anticyclone and partly from lower levels.


1997 ◽  
Vol 28 ◽  
pp. S65-S66 ◽  
Author(s):  
F. Arnold ◽  
K.H. Wohlfrom ◽  
J. Schneider ◽  
M. Klemm ◽  
T. Stilp ◽  
...  

2015 ◽  
Vol 15 (13) ◽  
pp. 7667-7684 ◽  
Author(s):  
Fuqing Zhang ◽  
Junhong Wei ◽  
Meng Zhang ◽  
K. P. Bowman ◽  
L. L. Pan ◽  
...  

Abstract. This study analyzes in situ airborne measurements from the 2008 Stratosphere–Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS). The focus is on the second research flight (RF02), which took place on 21–22 April 2008. This was the first airborne mission dedicated to probing gravity waves associated with strong upper-tropospheric jet–front systems. Based on spectral and wavelet analyses of the in situ observations, along with a diagnosis of the polarization relationships, clear signals of mesoscale variations with wavelengths ~ 50–500 km are found in almost every segment of the 8 h flight, which took place mostly in the lower stratosphere. The aircraft sampled a wide range of background conditions including the region near the jet core, the jet exit and over the Rocky Mountains with clear evidence of vertically propagating gravity waves of along-track wavelength between 100 and 120 km. The power spectra of the horizontal velocity components and potential temperature for the scale approximately between ~ 8 and ~ 256 km display an approximate −5/3 power law in agreement with past studies on aircraft measurements, while the fluctuations roll over to a −3 power law for the scale approximately between ~ 0.5 and ~ 8 km (except when this part of the spectrum is activated, as recorded clearly by one of the flight segments). However, at least part of the high-frequency signals with sampled periods of ~ 20–~ 60 s and wavelengths of ~ 5–~ 15 km might be due to intrinsic observational errors in the aircraft measurements, even though the possibilities that these fluctuations may be due to other physical phenomena (e.g., nonlinear dynamics, shear instability and/or turbulence) cannot be completely ruled out.


2016 ◽  
Author(s):  
M. Venkat Ratnam ◽  
S. Ravindra Babu ◽  
S. S. Das ◽  
Ghouse Basha ◽  
B. V. Krishnamurthy ◽  
...  

Abstract. Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) process in the Upper Troposphere and Lower Stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the North Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) Radio Occultation (RO) measurements and ozone and water vapor concentrations in UTLS region are obtained from Aura-Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km from the centre of cyclone. In our earlier study we have observed decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K) and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within the 500 km from the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from cyclone centre whereas the enhancement in the water vapor in the lower stratosphere is more significant on south-east side extending from 500–1000 km away from the cyclone centre. We estimated the cross-tropopause mass flux for different intensities of cyclones and found that the mean flux from stratosphere to troposphere for cyclonic stroms is 0.05 ± 0.29 × 10−3 kg m−2 and for very severe cyclonic stroms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed in the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget and consequentially the STE in the UTLS region.


2009 ◽  
Vol 66 (12) ◽  
pp. 3678-3694 ◽  
Author(s):  
Francesco d’Ovidio ◽  
Emily Shuckburgh ◽  
Bernard Legras

Abstract A new diagnostic (the “Lyapunov diffusivity”) is presented that has the ability to quantify isentropic mixing in diffusion units and detects local mixing events by describing latitude–longitude variability. It is a hybrid diagnostic, combining the tracer-based effective diffusivity with the particle-based Lyapunov exponent calculation. Isentropic mixing on the 350-K surface shows that there is significant longitudinal variation to the strength of mixing at the northern subtropical jet, with a strong mixing barrier over Asia and the western Pacific, a weaker mixing barrier over the western Atlantic, and active mixing regions at the jet exits over the eastern Pacific and Atlantic.


2015 ◽  
Vol 15 (2) ◽  
pp. 563-582 ◽  
Author(s):  
N. Glatthor ◽  
M. Höpfner ◽  
G. P. Stiller ◽  
T. von Clarmann ◽  
B. Funke ◽  
...  

Abstract. We present a HCN climatology of the years 2002–2012, derived from FTIR limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite, with the main focus on biomass burning signatures in the upper troposphere and lower stratosphere. HCN is an almost unambiguous tracer of biomass burning with a tropospheric lifetime of 5–6 months and a stratospheric lifetime of about 2 years. The MIPAS climatology is in good agreement with the HCN distribution obtained by the spaceborne ACE-FTS experiment and with airborne in situ measurements performed during the INTEX-B campaign. The HCN amounts observed by MIPAS in the southern tropical and subtropical upper troposphere have an annual cycle peaking in October–November, i.e. 1–2 months after the maximum of southern hemispheric fire emissions. The probable reason for the time shift is the delayed onset of deep convection towards austral summer. Because of overlap of varying biomass burning emissions from South America and southern Africa with sporadically strong contributions from Indonesia, the size and strength of the southern hemispheric plume have considerable interannual variations, with monthly mean maxima at, for example, 14 km between 400 and more than 700 pptv. Within 1–2 months after appearance of the plume, a considerable portion of the enhanced HCN is transported southward to as far as Antarctic latitudes. The fundamental period of HCN variability in the northern upper troposphere is also an annual cycle with varying amplitude, which in the tropics peaks in May after and during the biomass burning seasons in northern tropical Africa and southern Asia, and in the subtropics peaks in July due to trapping of pollutants in the Asian monsoon anticyclone (AMA). However, caused by extensive biomass burning in Indonesia and by northward transport of part of the southern hemispheric plume, northern HCN maxima also occur around October/November in several years, which leads to semi-annual cycles. There is also a temporal shift between enhanced HCN in northern low and mid- to high latitudes, indicating northward transport of pollutants. Due to additional biomass burning at mid- and high latitudes, this meridional transport pattern is not as clear as in the Southern Hemisphere. Upper tropospheric HCN volume mixing ratios (VMRs) above the tropical oceans decrease to below 200 pptv, presumably caused by ocean uptake, especially during boreal winter and spring. The tropical stratospheric tape recorder signal with an apparently biennial period, which was detected in MLS and ACE-FTS data from mid-2004 to mid-2007, is corroborated by MIPAS HCN data. The tape recorder signal in the whole MIPAS data set exhibits periodicities of 2 and 4 years, which are generated by interannual variations in biomass burning. The positive anomalies of the years 2003, 2007 and 2011 are caused by succession of strongly enhanced HCN from southern hemispheric and Indonesian biomass burning in boreal autumn and of elevated HCN from northern tropical Africa and the AMA in subsequent spring and summer. The anomaly of 2005 seems to be due to springtime emissions from tropical Africa followed by release from the summertime AMA. The vertical transport time of the anomalies is 1 month or less between 14 and 17 km in the upper troposphere and 8–11 months between 17 and 25 km in the lower stratosphere.


2017 ◽  
Author(s):  
Yann Cohen ◽  
Hervé Petetin ◽  
Valérie Thouret ◽  
Virginie Marécal ◽  
Béatrice Josse ◽  
...  

Abstract. In situ measurements in the upper troposphere – lower stratosphere (UTLS) are performed in the framework of the European research infrastructure IAGOS (In-service Aircraft for a Global Observing System) for ozone since 1994 and for carbon monoxide since 2002. The flight tracks cover a wide range of longitudes in the northern extratropics, extending from the North American western coast (125° W) to the eastern Asian coast (135° E), and more recently over the northern Pacific ocean. Different tropical regions are also sampled frequently, such as the Brazilian coast, central and southern Africa, southeastern Asia and the western Maritime Continent. As a result, a new set of climatologies for O3 (Aug. 1994–Dec. 2013) and CO (Dec. 2001–Dec. 2013) in the upper troposphere (UT), tropopause layer and lower stratosphere (LS) are made available, including quasi-global gridded horizontal distributions, and seasonal cycles over eight well sampled regions of interest in the northern extratropics. The seasonal cycles generally show a summertime maximum in O3 and a springtime maximum in CO in the UT, in contrast with the systematic springtime maximum in O3 and the quasi-absence of seasonal cycle of CO in the LS. This study highlights some regional variabilities in the UT notably (i) a west-east difference of O3 in boreal summer with up to 15 ppb more O3 over central Russia compared with northeast America, (ii) a systematic west-east gradient of CO from 60° E to 140° E (especially noticeable in spring and summer with about 5 ppb by 10 degrees longitude), (iii) a broad spring/summer maximum of CO over North East Asia, and (iv) a spring maximum of O3 over Western North America. Thanks to almost 20 years of O3 and 12 years of CO measurements, the IAGOS database is a unique data set to derive trends in the UTLS. Trends in O3 in the UT are positive and statistically significant in most regions, ranging from +0.25 to +0.45 ppb yr−1, characterized by the significant increase of the lowest values of the distribution. No significant trends of O3 are detected in the LS. Trends of CO in the UT, tropopause and LS are all negative and statistically significant. The estimated slopes range from −1.37 to −0.59 ppb yr−1 , with a nearly homogeneous decrease of the lowest values of the monthly distribution (fifth percentile) contrasting with the high inter-regional variability of the highest values (95th percentile).


2009 ◽  
Vol 9 (5) ◽  
pp. 18511-18543 ◽  
Author(s):  
J. Aschmann ◽  
B. M. Sinnhuber ◽  
E. L. Atlas ◽  
S. M. Schauffler

Abstract. The transport of very short-lived substances into the tropical upper troposphere and lower stratosphere is investigated by a three-dimensional chemical transport model using archived convective updraft mass fluxes (or detrainment rates) from the European Centre for Medium-Range Weather Forecast's ERA-Interim reanalysis. Large-scale vertical velocities are calculated from diabatic heating rates. With this approach we explicitly model the large scale subsidence in the tropical troposphere with convection taking place in fast and isolated updraft events. The model calculations agree generally well with observations of bromoform and methyl iodide from aircraft campaigns and with ozone and water vapor from sonde and satellite observations. Using a simplified treatment of dehydration and bromine product gas washout we give a range of 1.6 to 3 ppt for the contribution of bromoform to stratospheric bromine, assuming a uniform source in the boundary layer of 1 ppt. We show that the most effective region for VSLS transport into the stratosphere is the West Pacific, accounting for about 55% of the bromine from bromoform transported into the stratosphere under the supposition of a uniformly distributed source.


Sign in / Sign up

Export Citation Format

Share Document