Chromatic confocal sensor with dual dispersion for extending the measuring range

2021 ◽  
Author(s):  
Xiaojie Wang ◽  
Tao Ma
Keyword(s):  
2012 ◽  
Vol 12 (8) ◽  
pp. 6397-6400 ◽  
Author(s):  
Jun Su ◽  
Min Sun ◽  
Xianghui Zhang ◽  
Yanli Huang ◽  
Yihua Gao

2020 ◽  
Vol 1 (1) ◽  
pp. 180-186
Author(s):  
Mirosław Rucki ◽  

Dynamic properties of the air gauges performing in-process measurement are of the great importance because of dynamic error affecting the measurement results. The paper presents the analysis of the air gauges dynamics and some practical recommendation. The investigations proved the dependence of the time constants on the actually measured back-pressure. In practical solutions of in-process control, the air gauge must work in conditions of falling back-pressure since with the material removal dimensions of the machined workpiece go down. Thus, in the area of the smallest values of back-pressure within the measuring range, the time constant value is the largest. Worsening of the air gauge dynamic properties at the end stage of the machining must be considered when the dynamic characteristics of the projected air gauge are calculated.


2019 ◽  
Vol 5 (2) ◽  
pp. 76-82
Author(s):  
B. I. Zhabrunov ◽  
A. A. Kern ◽  
A. S. Tazov ◽  
B. V. Kutashov

In accordance with requirements of regulatory and guideline documents on radiation safety for controlled radiation factors for the purposes of operating control, controlled and acceptable levels are established. Any excess of these levels requires the determination of the causes and implementation of actions designed to eliminate the excess. The paper presents the method of calculation of these levels and establishing the levels in practice at the present time, disadvantages of accepted regulations are analyzed. It was shown that existing documents do not take into account some circumstances that define the radiation safety test procedure. In a number of measured control points of the radiological situation and staff radiation exposure, the values of controlled parameters are independent of reactor system mode. In the same points that show the dependence of measured data on a reactor power level, values of controlled parameters may also depend on a mode of pumps and purification system. Furthermore, real-time measurements review has showed that beyond the range of lower limit of measuring range of verification means in the range with nonspecified error, the measured data variance is described by mean value and acceptable error. At the same time, a mean value may be a lower order to lower limit of measuring range. Setting a value of controlled level equal to a sum of a mean of double or tripled root-mean-square deviation depending on the accepted confidence level, a possibility of earlier detection of controlled level excess emerges. In this situation, an exact absolute value of a controlling parameter is not essential as that radiation factor level poses no hazard to life. It is important to capture the onset of significant increase of radiation factor i.e. change of radiological situation.


Author(s):  
Amirov Sultan Fayzullayevich Et.al

The article discusses the issue of introducing a correction factor for protection and control devices, as the value of the secondary current in a certain range of the auto-adjustable current transformer does not correspond to the value of the secondary current in another range determined by the difference of magnetic driving forces generated by the components of the primary current. Alternatively, an algorithm has been developed to account for the measurement error in this condition in an automatic system that controls the operating mode of the current transformer. It was also found that the output data should be transmitted taking into account the correction factor in order to ensure the proper operation of the protection and measuring devices when the current transformer is switched to another measuring range in the measuring range.


2007 ◽  
Vol 20 (1) ◽  
pp. 21-29
Author(s):  
Slobodan Skundric ◽  
Dragan Kovacevic

This study deals with the problem of force and mass measurement in extended measuring range. Described solutions of electrodynamometer with multi range measuring and universal letter-batch mail scale are both concretely used in practice. The solution applied to universal mail scale is the original solution developed by Electrical Engineering Institute "Nikola Tesla".


Author(s):  
Suelí Fischer Beckert ◽  
Renan Ednan Flôres

In the context of metrological confirmation, calibration is an essential process in all quality assurance efforts. Several organizations choose to outsource this activity to accredited laboratories in accordance with the requirements set forth in ISO/IEC 17025: 2017. Companies understand that accredited laboratory has formal recognition of its technical competence to perform the services within its scope of accreditation. The document ILAC P14: 2013 sets out guidelines for the presentation of Calibration and Measurement Capability (CMC). However, when analysing the scope of accredited laboratories in some national calibration bodies, it is possible to observe that, for the same instrument and the same measuring range, different values are attributed to CMC. If the CMC should result from normal calibration operations on the best existing device, what causes this dispersion? How can the customer make effective use of the information contained in accreditation scopes? In order to further standardize the presentation of CMC in accreditation scopes, calibration methods adopted by laboratories should be required to meet the maximum permissible errors established by manufacturers or normative documents. Companies can outsource calibration activities. But the selection of service provider and the interpretation of the results remains a customer assignment. The paper presents an analysis of accreditation scopes of different national calibration bodies and discusses the qualification of those in charge of metrology management, regarding the knowledge and skills required for activity.


2014 ◽  
Vol 14 (4) ◽  
pp. 219-226 ◽  
Author(s):  
Dongzhi Zhang ◽  
Bokai Xia

Abstract Measurement of water content in oil-water mixing flow was restricted by special problems such as narrow measuring range and low accuracy. A simulated multi-sensor measurement system in the laboratory was established, and the influence of multi-factor such as temperature, and salinity content on the measurement was investigated by numerical simulation combined with experimental test. A soft measurement model based on rough set-support vector machine (RS-SVM) classifier and genetic algorithm-neural network (GA-NN) predictors was reported in this paper. Investigation results indicate that RS-SVM classifier effectively realized the pattern identification for water holdup states via fuzzy reasoning and self-learning, and GA-NN predictors are capable of subsection forecasting water content in the different water holdup patterns, as well as adjusting the model parameters adaptively in terms of online measuring range. Compared with the actual laboratory analyzed results, the soft model proposed can be effectively used for estimating the water content in oil-water mixture in all-round measuring range


2007 ◽  
Vol 364-366 ◽  
pp. 750-755 ◽  
Author(s):  
Xu Dong Yang ◽  
Jia Chun Li ◽  
Tie Bang Xie

A novel profilometer for three-dimensional (3D) surface topography measurement is presented. The profilometer has large measuring range, high precision and small measuring touch force. It is composed of a two-dimensional (2D) displacement sensor, a 3D platform based on vertical scanning, measuring and control circuits and an industrial control computer. When a workpiece is measured, the vertical undulation of the profile at a sampling point leads to a zero offset of the 2D displacement sensor. According to the zero offset, a piezoelectric actuator and a servo motor drive the vertical scanning platform to move vertically to ensure that the lever returns to its balance position. So the non-linear error caused by the rotation of the lever is very small even if the measuring range is large. When the stylus barges up against a steep wall, the horizontal resistance force results in another zero offset of the 2D displacement sensor. If the zero offset exceeds a quota, the vertical scanning platform descends to make the stylus climb the steep wall successfully. According to the theoretical and experimental analysis, the profilometer can measure roughness, profile of sphere, step, groove and other 3D surfaces with curvature precisely.


Sign in / Sign up

Export Citation Format

Share Document