The development of six-channel quantitative real-time PCR filter sets for nucleic acid detection

2021 ◽  
Author(s):  
Ruisheng Wang ◽  
Shaopeng Ren ◽  
Xiaojun Yin ◽  
Shuaifeng Zhao ◽  
Peng Gao ◽  
...  
Open Medicine ◽  
2007 ◽  
Vol 2 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Koray Ergunay ◽  
Gulcin Altinok ◽  
Bora Gurel ◽  
Ahmet Pinar ◽  
Arzu Sungur ◽  
...  

AbstractIntrauterine Parvovirus B19 infections may cause fetal anemia, non-immune hydrops fetalis or abortion. This study focuses on the pathogenic role of Parvovirus B19 in non-immune hydrops fetalis at Hacettepe University, a major reference hospital in Turkey. Twenty-two cases of non-immune hydrops fetalis were retrospectively selected out of a total of 431 hydrops fetalis specimens from the Department of Pathology archieves. Paraffine embedded tissue sections from placental and liver tissues from each case were evaluated by histopathology, immunohistochemistry, nested PCR and commercial quantitative Real-time PCR. Viral DNA was detected in placental tissues by Real-time PCR in 2 cases (2/22, 9.1%) where histopathology also revealed changes suggestive of Parvovirus B19 infection. No significant histopathologic changes were observed for the remaining sections. Nested PCR that targets the VP1 region of the viral genome and immunohistochemistry for viral capsid antigens were negative for all cases. As a result, Parvovirus B19 is identified as the etiologic agent for the development of non-immune hydrops fetalis for 9.1% of the cases in Hacettepe University, Turkey. Real-time PCR is observed to be an effective diagnostic tool for nucleic acid detection from paraffine embedded tissues. Part of this study was presented as a poster at XIIIth International Congress of Virology, San Francisco, USA (Abstract V-572).


2009 ◽  
Vol 55 (12) ◽  
pp. 2218-2222 ◽  
Author(s):  
Jürgen J Wenzel ◽  
Heiko Walch ◽  
Markus Bollwein ◽  
Hans Helmut Niller ◽  
Waltraud Ankenbauer ◽  
...  

Abstract Background: The emergence of a novel pandemic human strain of influenza A (H1N1/09) has clearly demonstrated the need for flexible tools enabling the rapid development of new diagnostic methods. Methods: We designed a set of reverse-transcription quantitative real-time PCR (RT-qPCR) assays based on the Universal ProbeLibrary (UPL)—a collection of 165 presynthesized, fluorescence-labeled locked nucleic acid (LNA) hydrolysis probes—specifically to detect the novel influenza A virus. We evaluated candidate primer/UPL-probe pairs with 28 novel influenza A/H1N1/09 patient samples of European and Mexican origin. Results: Of 14 assays in the hemagglutinin (HA) and neuraminidase (NA) genes, 12 detected viral nucleic acids from diluted patient samples without need for further optimization. We characterized the diagnostic specificity of the 2 best-performing assays with a set of samples comprising various influenza virus strains of human and animal origin that showed no cross-reactivity. The diagnostic sensitivity of these 2 primer/probe combinations was in the range of 100–1000 genomic copies/mL. In comparison to a reference assay recommended by the German health authorities, the analytical sensitivities and specificities of the assays were equivalent. Conclusions: Facing the emergence of novel influenza A/H1N1/09, we were able to develop, within 2 days, a set of sensitive and specific RT-qPCR assays for the laboratory diagnosis of suspected cases. H1N1/09 served as a model to show the feasibility of the UPL approach for the expedited development of new diagnostic assays to detect emerging pathogens.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 1771-1779 ◽  
Author(s):  
W. Hampton Henley ◽  
Nathan A. Siegfried ◽  
J. Michael Ramsey

Encoded beads carrying primer pairs for nucleic acid targets are used for sample preparation and multiplexed-in-space digital PCR quantification.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Xiang ◽  
Lizhen Li ◽  
Peng Liu ◽  
Ling Yan ◽  
Zeng Jiang ◽  
...  

AbstractAvian leukosis virus subgroup J (ALV-J) causes oncogenic disease in chickens in China, resulting in great harm to poultry production, and remains widespread in China. Herein, we employed a cross-priming amplification (CPA) approach and a nucleic acid detection device to establish a visual rapid detection method for ALV-J. The sensitivity of CPA, polymerase chain reaction (PCR) and real-time PCR (RT-PCR) was compared, and the three methods were used to detect ALV-J in the cell cultures which inoculated with clinical plasma. The result showed when the amplification reaction was carried out at 60 °C for just 60 min, the sensitivity of CPA was 10 times higher than conventional PCR, with high specificity, which was comparable with RT-PCR, based on detection of 123 cell cultures which inoculated with clinical plasma, the coincidence rate with real-time PCR was 97.3% (71/73). CPA detection of ALV-J does not require an expensive PCR instrument; a simple water bath or incubator is sufficient for complete DNA amplification, and the closed nucleic acid detection device avoids aerosol pollution, making judgment of results more intuitive and objective. The CPA assay would be a promising simple, rapid and sensitive method for identification of ALV-J.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Tanja Hoffmann ◽  
Andreas Hahn ◽  
Jaco J. Verweij ◽  
Gérard Leboulle ◽  
Olfert Landt ◽  
...  

This study aimed to assess standard and harsher nucleic acid extraction schemes for diagnostic helminth real-time PCR approaches from stool samples. A standard procedure for nucleic acid extraction from stool and a procedure including bead-beating as well as proteinase K digestion were compared with group-, genus-, and species-specific real-time PCR assays targeting helminths and nonhelminth pathogens in human stool samples. From 25 different in-house and commercial helminth real-time PCR assays applied to 77 stool samples comprising 67 historic samples and 10 external quality assessment scheme samples positively tested for helminths, higher numbers of positive test results were observed after bead-beating-based nucleic acid extraction for 5/25 (20%) real-time PCR assays irrespective of specificity issues. Lower cycle threshold values were observed for one real-time PCR assay after the standard extraction scheme, and for four assays after the bead-beating-based scheme. Agreement between real-time PCR results after both nucleic acid extraction strategies according to Cohen’s kappa ranged from poor to almost perfect for the different assays. Varying agreement was observed in eight nonhelminth real-time PCR assays applied to 67 historic stool samples. The study indicates highly variable effects of harsh nucleic acid extraction approaches depending on the real-time PCR assay used.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Wang ◽  
Hongjuan Liao ◽  
Yueheng Wang ◽  
Jinlin Zhou ◽  
Feng Wang ◽  
...  

Abstract Background Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. Methods Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. Results The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. Conclusions Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.


2008 ◽  
Vol 375 (1) ◽  
pp. 150-152 ◽  
Author(s):  
Cheng Xin Yi ◽  
Jun Zhang ◽  
Ka Man Chan ◽  
Xiao Kun Liu ◽  
Yan Hong

Sign in / Sign up

Export Citation Format

Share Document