Delaunay triangulation for image object indexing: a novel method for shape representation

Author(s):  
Yi Tao ◽  
William I. Grosky
2013 ◽  
Vol 14 (5) ◽  
pp. 1304-1321 ◽  
Author(s):  
Songhe Song ◽  
Min Wan ◽  
Shengxi Wang ◽  
Desheng Wang ◽  
Zhengping Zou

AbstractA novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique (AFT) and conforming Delaunay triangulation. Given a triangulated surface mesh, AFT is firstly applied to mesh several layers of elements adjacent to the boundary. The rest of the domain is then meshed by the conforming Delaunay triangulation. The non-conformal interface between two parts of meshes are adjusted. Mesh refinement and mesh optimization are then preformed to obtain a more reasonable-sized mesh with better quality. Robustness and quality of the proposed method is shown. Convergence proof of each stage as well as the whole algorithm is provided. Various numerical examples are included as well as the quality of the meshes.


2001 ◽  
Vol 11 (02n03) ◽  
pp. 341-352 ◽  
Author(s):  
SANGYOON LEE ◽  
CHAN-IK PARK ◽  
CHAN-MO PARK

Delaunay triangulation has been much used in such applications as volume rendering, shape representation, terrain modeling and so on. The main disadvantage of Delaunay triangulation is large computation time required to obtain the triangulation on an input points sets. This time can be reduced by using more than one processor, and several parallel algorithms for Delaunay triangulation have been proposed. In this paper, we propose an improved parallel algorithm for Delaunay triangulation, which partitions the bounding convex region of the input points set into a number of regions by using Delaunay edges and generates Delaunay triangles in each region by applying an incremental construction approach. Partitioning by Delaunay edges makes it possible to eliminate merging step required for integrating subresults. It is shown from the experiments that the proposed algorithm has good load balance and is more efficient than Cignoni et al.'s algorithm and our previous algorithm.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Dilip K. Prasad

A novel method that uses both the local and the global nature of fit for dominant point detection is proposed. Most other methods use local fit to detect dominant points. The proposed method uses simple metrics like precision (local nature of fit) and reliability (global nature of fit) as the optimization goals for detecting the dominant points. Depending on the desired level of fitting (very fine or crude), the threshold for precision and reliability can be chosen in a very simple manner. Extensive comparison of various line fitting algorithms based on metrics such as precision, reliability, figure of merit, integral square error, and dimensionality reduction is benchmarked on publicly available and widely used datasets (Caltech 101, Caltech 256, and Pascal (2007, 2008, 2009, 2010) datasets) comprising 102628 images. Such work is especially useful for segmentation, shape representation, activity recognition, and robust edge feature extraction in object detection and recognition problems.


Author(s):  
M.A. Gregory ◽  
G.P. Hadley

The insertion of implanted venous access systems for children undergoing prolonged courses of chemotherapy has become a common procedure in pediatric surgical oncology. While not permanently implanted, the devices are expected to remain functional until cure of the primary disease is assured. Despite careful patient selection and standardised insertion and access techniques, some devices fail. The most commonly encountered problems are colonisation of the device with bacteria and catheter occlusion. Both of these difficulties relate to the development of a biofilm within the port and catheter. The morphology and evolution of biofilms in indwelling vascular catheters is the subject of ongoing investigation. To date, however, such investigations have been confined to the examination of fragments of biofilm scraped or sonicated from sections of catheter. This report describes a novel method for the extraction of intact biofilms from indwelling catheters.15 children with Wilm’s tumour and who had received venous implants were studied. Catheters were removed because of infection (n=6) or electively at the end of chemotherapy.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


Sign in / Sign up

Export Citation Format

Share Document