Estimation of moving heat sources with a three-dimensional unsteady inverse method

2001 ◽  
Author(s):  
David Nortershauser ◽  
Pierre Millan
Author(s):  
Marcin Lefik ◽  
Krzysztof Komeza ◽  
Ewa Napieralska-Juszczak ◽  
Daniel Roger ◽  
Piotr Andrzej Napieralski

Purpose The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor. Design/methodology/approach To obtain heat sources for the thermal model, calculations of the electromagnetic field were made using the Opera 3D program including effect of rotation and the resulting eddy current losses. To analyse the thermal phenomenon, the 3D coupled thermal-fluid (CFD) model is used. Findings The presented results show clearly that laminated construction is much better from a point of view of efficiency and temperature. However, solid construction can be interesting for high speed machines due to their mechanical robustness. Research limitations/implications The main problem, despite the use of parallel calculations, is the long calculation time. Practical implications The obtained simulation and experimental results show the possibility of building a machine operating at a much higher ambient temperature than it was previously produced for example in the vicinity of the aircraft turbines. Originality/value The paper presents the application of fully three-dimensional coupled electromagnetic and thermal analysis of new machine constructions designed for elevated temperature.


2006 ◽  
Vol 128 (4) ◽  
pp. 745-752 ◽  
Author(s):  
C. J. Hooke ◽  
K. Y. Li

Using modern EHL programs it is relatively simple to determine the pressures and clearances in rough EHL contacts. The pressures may then be used to calculate the subsurface stresses in the two contacting components. However, the results depend on the assumptions made about the fluid’s rheology. While it is possible to measure the clearances using interferometric techniques, measurement of either the pressures or stresses is extremely difficult. However it is these, rather than the clearances, that determine the life of the contact. In previous papers the authors have described how the inverse method may be used to validate the stress predictions for contacts with transverse roughness. This type of contact has fluid flow in only one plane and it remained necessary to check the results for more general rough surfaces where the flow is three-dimensional. Accordingly, the inverse method is extended, in this paper, to a situation where out-of-plane flow is significant. The paper describes the approach and presents some preliminary results for rolling contacts.


1990 ◽  
Vol 112 (3) ◽  
pp. 346-354 ◽  
Author(s):  
J. E. Borges

There are surprisingly few inverse methods described in the literature that are truly three dimensional. Here, one such method is presented. This technique uses as input a prescribed distribution of the mean swirl, i.e., radius times mean tangential velocity, given throughout the meridional section of the machine. In the present implementation the flow is considered inviscid and incompressible and is assumed irrotational at the inlet to the blade row. In order to evaluate the velocity field inside the turbomachine, the blades (supposed infinitely thin) are replaced by sheets of vorticity, whose strength is related to the specified mean swirl. Some advice on the choice of a suitable mean swirl distribution is given. In order to assess the usefulness of the present procedure, it was decided to apply it to the design of an impeller for a low-speed radial-inflow turbine. The results of the tests are described in the second part of this paper.


1999 ◽  
Vol 121 (1) ◽  
pp. 182-186 ◽  
Author(s):  
O. Manca ◽  
B. Morrone ◽  
S. Nardini

A three-dimensional heat transfer model has been developed to obtain the conductive thermal field inside a brick-type solid under a moving heat source with different beam profiles. The problem in quasi-steady state has been approximated by neglecting the axial diffusion component; thus, for Peclet numbers greater than 5, the elliptic differential equation becomes a parabolic one along the motion direction. The dependence of the solution on the radiative and convective heat losses has been highlighted. Thermal fields are strongly dependent on different spot shapes and on the impinging jet; this situation allows control of the parameters involved in the technological process.


Author(s):  
Hwabhin Kwon ◽  
Heesung Park

Abstract Personal mobility devices have drawn growing attention to relieve the congestion of traffic and air pollution. The efficiency of electric motors is significant in terms of energy utilization, driving range, and lifetime of the devices. In this study, a brushless direct-current (BLDC) motor is numerically investigated to maximize the system efficiency. The inevitable energy losses in the motor are evaluated using heat sources generated in the motor components. The resulting copper and iron losses generate heat and decrease the motor efficiency. With these, the developed three-dimensional numerical model accurately predicts the temperature variations of the motor components in accordance with the experimental results. Numerical simulations are conducted by supplying air flow at a rate of 0 to 40 l/min. The results show that the decreased temperature at copper windings improves the efficiency of the motor as more air flowrate is supplied. Nonetheless, after the temperature at the copper windings reaches 42.5 °C at an air flow of 30 l/min, the temperature remains constant despite additional increase in the air flow. Through a comparison between the improved electrical work by cooling and the consumed energy to supply the air flowrate, the maximum efficiency of the air-cooled BLDC is found to be 86.3% with an optimal air flowrate of 30 l/min.


1992 ◽  
Author(s):  
S. J. Wang ◽  
M. J. Yuan ◽  
G. Xi ◽  
S. X. Liu ◽  
D. T. Qi ◽  
...  

Sixteen years ago an inverse method of designing radial, mixed flow impellers was proposed by the first author of this paper, which was based on a quasi-three-dimensional stream surface theory. The contradictions between the full controlling of the flow field in the whole impeller and the designed bables’ smooth machinability can be perfectly resolved with the above method (So it is called “all-over-controlled vortex distribution method”). This paper presents the developments and industrial applications of the above method in the last decade. Two single centrifugal compressor model stages with the 3-D impellers designed by this method are studied in detail, and several performance curves of the multistage centrifugal compressors designed by this method are also presented.


Author(s):  
Alain Demeulenaere ◽  
Olivier Léonard ◽  
René Van den Braembussche

The use of a three-dimensional Euler inverse method for the design of a centrifugal impeller is demonstrated. Both the blade shape and the endwalls are iteratively designed. The meridional contour is modified in order to control the mean velocity level in the blade channel, while the blade shape is designed to achieve a prescribed loading distribution between the inlet and the outlet. The method salves the time dependent Euler equations in a numerical domain of which some boundaries (the blades or the endwalls) move and change shape during the transient part of the computation, until a prescribed pressure distribution is achieved on the blade surfaces. The method is applied to the design of a centrifugal compressor impeller, whose hub endwall and blade surfaces are modified by the inviscid inverse method. The real performance of both initial and modified geometries are compared through three-dimensional Navier-Stokes computations.


Sign in / Sign up

Export Citation Format

Share Document