Full-field dynamic deformation and strain measurements using high-speed digital cameras

Author(s):  
Timothy E. Schmidt ◽  
John Tyson ◽  
Konstantin Galanulis ◽  
Duane M. Revilock ◽  
Matthew E. Melis
2015 ◽  
Vol 782 ◽  
pp. 49-58
Author(s):  
Han Liu ◽  
Peng Wan Chen ◽  
Bao Qiao Guo ◽  
Shao Long Zhang ◽  
Hai Bo Liu ◽  
...  

In this paper, the dynamic deformation and rupture of pre-notched thin metal plates subjected to confined blast loading were investigated. The thin copper plates with cross-shape pre-notch were clamped on the end of a confined cylinder vessel by a cover flange. An explosive charge with a mass of 4g was detonated in the vessel center to generate blast load acting on the metal plates. The images of metal plates were recorded by two high-speed cameras. The displacement and strain fields during the deformation and rupture process were measured by using 3D digital image correlation (3D DIC). The effects of pre-notches on the dynamic deformation and rupture of thin metal plates were analyzed. The microstructure of fracture surface was examined The 3D DIC technique is proven to be an effective method to conduct dynamic full-field deformation measurement.


2006 ◽  
Vol 326-328 ◽  
pp. 211-214 ◽  
Author(s):  
Xiao Yuan He ◽  
Wei Sun ◽  
Xiang Zheng ◽  
Meng Nie

It is critical to measure the static and dynamic deformation of the micro beam over their full range of voltage and frequency inputs, which are key parameters for predicting device behavior. In this study, full-field technique by correlation of projected fringe patterns is selected to determine static deformation, while dynamic parameters can be obtained by DIC with high-speed CMOS camera, whose maximal frame rate is 32k f/s. The static tests of micro beams are carried out by applying electric field forces under different dc voltage, while the dynamic tests are excited by harmonic excitations. Using the DIC method, the whole field in-plane or out-of-plane displacements of the micro beams are obtained, and hence the dynamic characteristics by post-processing of vibration analysis. Experimental results including the bending deformation and vibration parameters are reported and compared with finite element method. This study verifies the feasibility of this technique to measure both static and dynamic characteristics of MEMS components.


Author(s):  
R. Bhattacharya ◽  
N. C. Goulbourne

The present study is aimed at understanding the effects of thermal shock and associated microstructural features on the dynamic deformation mechanisms in Ti2AlC, a Mn+1AXn phase ternary ceramic. These materials crystallize in a Hexagonal Close Packed (HCP) structure with a c/a ratio greater than 1.67 which results in kink band formations when subjected to loading. In this work, we report the microstructural changes associated with thermal shocking of Mn+1AXn phases and its effects on deformation mechanisms, under dynamic compressive loading. The specimens are heated to temperatures of 220, 550 and 900°C, held at each temperature for 5–10 minutes, and subsequently quenched in water at 20°C to induce thermal shock. The thermal shock resistance and its effect on mechanical properties is investigated by subjecting heat treated specimens to compressive loading at high strain rates (∼1000–4500 s−1) using a Split Hopkinson Pressure Bar (SHPB). The microstructures of thermally shocked specimens are characterized by Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS) analysis to reveal the surface morphologies and characteristics. The displacements during the deformation events are captured using in situ high speed imaging, with full-field 2D Digital Image Correlation (DIC) technique. The key microscale mechanisms of deformation are studied using SEM analysis of deformed/fractured specimens.


2021 ◽  
Vol 27 (8) ◽  
pp. 617-636
Author(s):  
Guojun Deng ◽  
Zhixiang Zhou ◽  
Shuai Shao ◽  
Xi Chu ◽  
Peng Du

This study proposes the use of a high-speed camera as a holographic visual sensor to obtain the dense full-field dynamic parameters of the main beam of a bridge by the field of view through uniaxial rotation photography. Based on the basic principle that the frequency and mode of a structure are inherent characteristics, the mode coordinates obtained from each field of view are unified, normalized, and matched according to the same name pixels to obtain the dense fullfield dynamic parameters of the entire bridge. The frequency and first three order modes of a self-anchored suspension test bridge are collected by the method proposed in this study. The frequency comparison between the accelerometers and dial gauges is within 3%, and the mode shapes are more holographic and more realistic than those obtained by limited measuring points. In addition, the difference in the curvature mode under various damage conditions obtained by limited measurement points is compared with that obtained by the method proposed in this study. Results shows that the dense full-field modal curvature difference can reflect the change in the damage location even in a low order, which means the sensitivity of the change of damage location in low-order modal.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


Sign in / Sign up

Export Citation Format

Share Document