Extrapolation method to extend the dynamic range of the Shack-Hartmann wave-front sensor

2007 ◽  
Author(s):  
Huaqiang Li ◽  
Helun Song ◽  
Xuejun Rao ◽  
Changhui Rao ◽  
Jinsheng Yang
2020 ◽  
Vol 40 (16) ◽  
pp. 1611004
Author(s):  
韩妍娜 Han Yanna ◽  
胡新奇 Hu Xinqi ◽  
董冰 Dong Bing

2010 ◽  
Vol 18 (23) ◽  
pp. 23906 ◽  
Author(s):  
Saifollah Rasouli ◽  
M. Dashti ◽  
Anamparambu. N. Ramaprakash

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 164
Author(s):  
Neda Meshksar ◽  
Moritz Mehmet ◽  
Katharina-Sophie Isleif ◽  
Gerhard Heinzel

We propose to combine differential wave-front sensing (DWS) and differential power sensing (DPS) in a Mach-Zehnder type interferometer for measuring the rotational dynamics of a test-mass. Using the DWS method, a high sensitive measurement of 6 nrad Hz−1/2 in sub-Hz frequencies can be provided around the test-mass nominal position (±0.11 mrad), whereas the measurement of a wide rotation range (±5 mrad) is realized by the DPS method. The interferometer can be combined with deep frequency modulation (DFM) interferometry for measurement of the test-mass translational dynamics. The setup and the resulting interferometric signals are verified by simulations. An optimization algorithm is applied to find suitable positions of the lenses and the waist size of the input laser in order to determine the best trade of between the slope of DWS, dynamic range of DPS, and the interferometric contrast. Our simulation further allows to investigate the layout for robustness and design tolerances. We compare our device with a recent experimental realization of a DFM interferometer and find that a practical implementation of the interferometer proposed here has the potential to provide translational and rotational test-mass tracking with state-of-the-art sensitivity. The simple and compact design, and especially the capability of sensing the test-mass rotation in a wide range and simultaneously providing a high-precision measurement close to the test-mass nominal position makes the design especially suitable for example for employment in torsion pendulum setups.


2005 ◽  
Vol 44 (23) ◽  
pp. 4838 ◽  
Author(s):  
Junwon Lee ◽  
Roland V. Shack ◽  
Michael R. Descour

Author(s):  
F. Ouyang ◽  
D. A. Ray ◽  
O. L. Krivanek

Electron backscattering Kikuchi diffraction patterns (BKDP) reveal useful information about the structure and orientation of crystals under study. With the well focused electron beam in a scanning electron microscope (SEM), one can use BKDP as a microanalysis tool. BKDPs have been recorded in SEMs using a phosphor screen coupled to an intensified TV camera through a lens system, and by photographic negatives. With the development of fiber-optically coupled slow scan CCD (SSC) cameras for electron beam imaging, one can take advantage of their high sensitivity and wide dynamic range for observing BKDP in SEM.We have used the Gatan 690 SSC camera to observe backscattering patterns in a JEOL JSM-840A SEM. The CCD sensor has an active area of 13.25 mm × 8.83 mm and 576 × 384 pixels. The camera head, which consists of a single crystal YAG scintillator fiber optically coupled to the CCD chip, is located inside the SEM specimen chamber. The whole camera head is cooled to about -30°C by a Peltier cooler, which permits long integration times (up to 100 seconds).


Author(s):  
Zenji Horita ◽  
Ryuzo Nishimachi ◽  
Takeshi Sano ◽  
Minoru Nemoto

Absorption correction is often required in quantitative x-ray microanalysis of thin specimens using the analytical electron microscope. For such correction, it is convenient to use the extrapolation method[l] because the thickness, density and mass absorption coefficient are not necessary in the method. The characteristic x-ray intensities measured for the analysis are only requirement for the absorption correction. However, to achieve extrapolation, it is imperative to obtain data points more than two at different thicknesses in the identical composition. Thus, the method encounters difficulty in analyzing a region equivalent to beam size or the specimen with uniform thickness. The purpose of this study is to modify the method so that extrapolation becomes feasible in such limited conditions. Applicability of the new form is examined by using a standard sample and then it is applied to quantification of phases in a Ni-Al-W ternary alloy.The earlier equation for the extrapolation method was formulated based on the facts that the magnitude of x-ray absorption increases with increasing thickness and that the intensity of a characteristic x-ray exhibiting negligible absorption in the specimen is used as a measure of thickness.


Author(s):  
R. Vincent

Microanalysis and diffraction on a sub-nanometre scale have become practical in modern TEMs due to the high brightness of field emission sources combined with the short mean free paths associated with both elastic and inelastic scattering of incident electrons by the specimen. However, development of electron diffraction as a quantitative discipline has been limited by the absence of any generalised theory for dynamical inelastic scattering. These problems have been simplified by recent innovations, principally the introduction of spectrometers such as the Gatan imaging filter (GIF) and the Zeiss omega filter, which remove the inelastic electrons, combined with annual improvements in the speed of computer workstations and the availability of solid-state detectors with high resolution, sensitivity and dynamic range.Comparison of experimental data with dynamical calculations imposes stringent requirements on the specimen and the electron optics, even when the inelastic component has been removed. For example, no experimental CBED pattern ever has perfect symmetry, departures from the ideal being attributable to residual strain, thickness averaging, inclined surfaces, incomplete cells and amorphous surface layers.


Author(s):  
M. Watanabe ◽  
Z. Horita ◽  
M. Nemoto

X-ray absorption in quantitative x-ray microanalysis of thin specimens may be corrected without knowledge of thickness when the extrapolation method or the differential x-ray absorption (DXA) method is used. However, there is an experimental limitation involved in each method. In this study, a method is proposed to overcome such a limitation. The method is developed by introducing the ζ factor and by combining the extrapolation method and DXA method. The method using the ζ factor, which is called the ζ-DXA method in this study, is applied to diffusion-couple experiments in the Ni-Al system.For a thin specimen where incident electrons are fully transparent, the characteristic x-ray intensity generated from a beam position, I, may be represented as I = (NρW/A)Qωaist.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


Author(s):  
N. Mori ◽  
T. Oikawa ◽  
Y. Harada ◽  
J. Miyahara ◽  
T. Matsuo

The Imaging Plate (IP) is a new type imaging device, which was developed for diagnostic x ray imaging. We have reported that usage of the IP for a TEM has many merits; those are high sensitivity, wide dynamic range, and good linearity. However in the previous report the reading system was prototype drum-type-scanner, and IP was also experimentally made, which phosphor layer was 50μm thick with no protective layer. So special care was needed to handle them, and they were used only to make sure the basic characteristics. In this article we report the result of newly developed reading, printing system and high resolution IP for practical use. We mainly discuss the characteristics of the IP here. (Precise performance concerned with the reader and other system are reported in the other article.)Fig.1 shows the schematic cross section of the IP. The IP consists of three parts; protective layer, phosphor layer and support.


Sign in / Sign up

Export Citation Format

Share Document