Gate edge roughness in electron beam direct write and its influence to device characteristics

Author(s):  
Kang-Hoon Choi ◽  
Rok Dittrich ◽  
Matthias Goldbach ◽  
Christoph Hohle ◽  
Katja Keil ◽  
...  

2002 ◽  
Vol 739 ◽  
Author(s):  
J. Alexander Liddle ◽  
Gregg M. Gallatin ◽  
Leonidas E. Ocola

ABSTRACTElectron beam lithography still represents the most effective way to pattern materials at the nanoscale, especially in the case of structures, which are not indefinitely repeating a simple motif. The success of e-beam lithography depends on the availability of suitable resists. There is a substantial variety of resist materials, from PMMA to calixarenes, to choose from to achieve high resolution in electron-beam lithography. However, these materials suffer from the limitation of poor sensitivity and poor contrast.In both direct-write and projection e-beam systems the maximum beam current for a given resolution is limited by space-charge effects. In order to make the most efficient use of the available current, the resist must be as sensitive as possible. This leads, naturally, to the use of chemically amplified (CA) systems. Unfortunately, in the quest for ever smaller feature sizes and higher throughputs, even chemically amplified materials are limited: ultimately, sensitivity and resolution are not independent. Current resists already operate in the regime of < 1 electron/nm2. In this situation detailed models are the only way to understand material performance and limits.Resist requirements, including sensitivity, etch selectivity, environmental stability, outgassing, and line-edge roughness as they pertain to, high-voltage (100 kV) direct write and projection electron-beam exposure systems are described. Experimental results obtained on CA resists in the SCALPEL® exposure system are presented and the fundamental sensitivity limits of CA and conventional materials in terms of shot-noise and resolution limits in terms of electron-beam solid interactions are discussed.



1988 ◽  
Vol 49 (C4) ◽  
pp. C4-291-C4-294
Author(s):  
K. BARLOW
Keyword(s):  




Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 115
Author(s):  
Lukas Seewald ◽  
Robert Winkler ◽  
Gerald Kothleitner ◽  
Harald Plank

Additive, direct-write manufacturing via a focused electron beam has evolved into a reliable 3D nanoprinting technology in recent years. Aside from low demands on substrate materials and surface morphologies, this technology allows the fabrication of freestanding, 3D architectures with feature sizes down to the sub-20 nm range. While indispensably needed for some concepts (e.g., 3D nano-plasmonics), the final applications can also be limited due to low mechanical rigidity, and thermal- or electric conductivities. To optimize these properties, without changing the overall 3D architecture, a controlled method for tuning individual branch diameters is desirable. Following this motivation, here, we introduce on-purpose beam blurring for controlled upward scaling and study the behavior at different inclination angles. The study reveals a massive boost in growth efficiencies up to a factor of five and the strong delay of unwanted proximal growth. In doing so, this work expands the design flexibility of this technology.



1992 ◽  
Vol 19 (1-4) ◽  
pp. 737-740
Author(s):  
M.N. Webster ◽  
A.H. Verbruggen ◽  
J. Romijn ◽  
H.F.F. Jos ◽  
P.M.A. Moors ◽  
...  


2014 ◽  
Vol 8 (1) ◽  
pp. 083098 ◽  
Author(s):  
Michael G. Wood ◽  
Li Chen ◽  
Justin R. Burr ◽  
Ronald M. Reano


1996 ◽  
Vol 9 (4) ◽  
pp. 663-675 ◽  
Author(s):  
Anthony E. Novembre ◽  
Regine G. Tarascon ◽  
Steven D. Berger ◽  
Chris J. Biddick ◽  
Myrtle I. Blakey ◽  
...  






Sign in / Sign up

Export Citation Format

Share Document