The Rationale and Efficacy of Applying Multiple Imaging Techniques for Breast Examination: X-Ray Mammography and Ultrasound Visualization

1983 ◽  
Author(s):  
Elizabeth Kelly-Fry
2021 ◽  
Vol 4 (3) ◽  
pp. 238-242
Author(s):  
Y.L. Gerashchenko ◽  
◽  
◽  

This paper discusses a particular time in woman’s life, breastfeeding, that takes from 4 months to 2 years. Mean age of pregnant women increases every year, while reproductive technologies allow for realizing childbearing function in the second period of adulthood. Many diseases those diagnosis requires multiple examinations occur with age. When the mother is forced to stop breastfeeding in view of the need for examination, it is essential for her to get a reasoned rationale and to know the duration of limitations. Unfortunately, no regulations covering the use of modern nuclear medicine and X-ray technologies in breastfeeding women are available in the Russian Federation. Foreign experience may address the existing lack of knowledge. In the future, these data may provide guidance to develop national recommendations. This review paper summarizes the studies on imaging techniques and nuclear medicine procedures in lactating women and limitations of breastfeeding in their use. KEYWORDS: lactation, breastfeeding, breast examination, nuclear medicine, mammologist. FOR CITATION: Gerashchenko Y.L. Radiological and nuclear medicine examinations in breastfeeding women. A novel protocol of the Academy of Breastfeeding. Russian Journal of Woman and Child Health. 2021;4(3):238–242 (in Russ.). DOI: 10.32364/2618-8430-2021-4-3-238-242.


2016 ◽  
Author(s):  
Alessandra Gianoncelli ◽  
George Kourousias ◽  
Matteo Altissimo ◽  
Diana E. Bedolla ◽  
Lucia Merolle ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
pp. 27-32
Author(s):  
Mahasweta Mandal ◽  
Swati Bandyopadhyay

Archives, libraries, and commercial firms are utilizing new advanced imaging methods for research into cultural heritage objects. New technical systems, including the latest multispectral (MSI) and x-ray fluorescence (XRF) imaging systems and higher resolution cameras raise major challenges for not only the integration of new technologies, but also the ability to store, manage and access large amounts of data in archives and libraries. Recent advanced imaging of ancient Syriac palimpsests (parchment manuscripts with hidden texts embedded within them) demonstrated an approach that utilized multiple imaging techniques and integration and analysis of data from multiple sources. Three palimpsest imaging projects (Archimedes Palimpsest, Syriac Galen Palimpsest, HMML Palimpsest) supported research with a range of advanced imaging techniques with MSI and XRF, requiring implementation and standardization of new digitization and data management practices for the integration, preservation and sharing of advanced image data.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


2021 ◽  
Vol 655 (1) ◽  
pp. 012073
Author(s):  
J. A. Achuka ◽  
M. R. Usikalu ◽  
M. A. Aweda ◽  
O. A. Olowoyeye ◽  
C. A. Enemuwe ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 381
Author(s):  
Gautier Cesbron-Lavau ◽  
Aurélie Goux ◽  
Fiona Atkinson ◽  
Alexandra Meynier ◽  
Sophie Vinoy

During processing of cereal-based food products, starch undergoes dramatic changes. The objective of this work was to evaluate the impact of food processing on the starch digestibility profile of cereal-based foods using advanced imaging techniques, and to determine the effect of preserving starch in its native, slowly digestible form on its in vivo metabolic fate. Four different food products using different processing technologies were evaluated: extruded products, rusks, soft-baked cakes, and rotary-molded biscuits. Imaging techniques (X-ray diffraction, micro-X-ray microtomography, and electronic microscopy) were used to investigate changes in slowly digestible starch (SDS) structure that occurred during these different food processing technologies. For in vivo evaluation, International Standards for glycemic index (GI) methodology were applied on 12 healthy subjects. Rotary molding preserved starch in its intact form and resulted in the highest SDS content (28 g/100 g) and a significantly lower glycemic and insulinemic response, while the three other technologies resulted in SDS contents below 3 g/100 g. These low SDS values were due to greater disruption of the starch structure, which translated to a shift from a crystalline structure to an amorphous one. Modulation of postprandial glycemia, through starch digestibility modulation, is a meaningful target for the prevention of metabolic diseases.


2014 ◽  
Vol 47 (6) ◽  
pp. 1882-1888 ◽  
Author(s):  
J. Hilhorst ◽  
F. Marschall ◽  
T. N. Tran Thi ◽  
A. Last ◽  
T. U. Schülli

Diffraction imaging is the science of imaging samples under diffraction conditions. Diffraction imaging techniques are well established in visible light and electron microscopy, and have also been widely employed in X-ray science in the form of X-ray topography. Over the past two decades, interest in X-ray diffraction imaging has taken flight and resulted in a wide variety of methods. This article discusses a new full-field imaging method, which uses polymer compound refractive lenses as a microscope objective to capture a diffracted X-ray beam coming from a large illuminated area on a sample. This produces an image of the diffracting parts of the sample on a camera. It is shown that this technique has added value in the field, owing to its high imaging speed, while being competitive in resolution and level of detail of obtained information. Using a model sample, it is shown that lattice tilts and strain in single crystals can be resolved simultaneously down to 10−3° and Δa/a= 10−5, respectively, with submicrometre resolution over an area of 100 × 100 µm and a total image acquisition time of less than 60 s.


Sign in / Sign up

Export Citation Format

Share Document