Design and optimization of large area thin-film CdTe detector for radiation therapy imaging applications

2010 ◽  
Vol 37 (8) ◽  
pp. 3980-3994 ◽  
Author(s):  
E. Ishmael Parsai ◽  
Diana Shvydka ◽  
Jun Kang
2011 ◽  
Vol 38 (6Part33) ◽  
pp. 3833-3833
Author(s):  
X Jin ◽  
D Shvydka ◽  
E Parsai

1989 ◽  
Vol 149 ◽  
Author(s):  
J. G. Shaw ◽  
M. Hack

ABSTRACTWe describe a vertical amorphous silicon thin-film transistor which is easy to fabricate and has a very short channel length that is determined by deposition, not lithography. Our vertical TFTs are compatible with large-area processing techniques andd have suitable terminal characteristics for use in practical circuits. Unlike a conventional thin-film transistor, the current path is primarily parallel to the electric field created by an insulated gate electrode. A two-dimensional computer program is used to analyze these devices and guide their design and optimization. We show how to suppress excessive leakage currents and improve the saturation of the output characteristics by a novel current-blocking technique.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuki Tsuruma ◽  
Emi Kawashima ◽  
Yoshikazu Nagasaki ◽  
Takashi Sekiya ◽  
Gaku Imamura ◽  
...  

AbstractPower devices (PD) are ubiquitous elements of the modern electronics industry that must satisfy the rigorous and diverse demands for robust power conversion systems that are essential for emerging technologies including Internet of Things (IoT), mobile electronics, and wearable devices. However, conventional PDs based on “bulk” and “single-crystal” semiconductors require high temperature (> 1000 °C) fabrication processing and a thick (typically a few tens to 100 μm) drift layer, thereby preventing their applications to compact devices, where PDs must be fabricated on a heat sensitive and flexible substrate. Here we report next-generation PDs based on “thin-films” of “amorphous” oxide semiconductors with the performance exceeding the silicon limit (a theoretical limit for a PD based on bulk single-crystal silicon). The breakthrough was achieved by the creation of an ideal Schottky interface without Fermi-level pinning at the interface, resulting in low specific on-resistance Ron,sp (< 1 × 10–4 Ω cm2) and high breakdown voltage VBD (~ 100 V). To demonstrate the unprecedented capability of the amorphous thin-film oxide power devices (ATOPs), we successfully fabricated a prototype on a flexible polyimide film, which is not compatible with the fabrication process of bulk single-crystal devices. The ATOP will play a central role in the development of next generation advanced technologies where devices require large area fabrication on flexible substrates and three-dimensional integration.


2021 ◽  
Vol 17 ◽  
pp. 100352
Author(s):  
S.-J. Wang ◽  
M. Sawatzki ◽  
H. Kleemann ◽  
I. Lashkov ◽  
D. Wolf ◽  
...  

2015 ◽  
Vol 135 ◽  
pp. 35-42 ◽  
Author(s):  
A. Gerber ◽  
V. Huhn ◽  
T.M.H. Tran ◽  
M. Siegloch ◽  
Y. Augarten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document