Thermoacoustic engines as self-powered sensors within a nuclear reactor

2014 ◽  
Vol 135 (4) ◽  
pp. 2275-2276
Author(s):  
Steven L. Garrett ◽  
Randall A. Ali ◽  
James A. Smith
Author(s):  
Christopher M. Dumm ◽  
Jeffrey S. Vipperman ◽  
Jorge V. Carvajal ◽  
Melissa M. Walter ◽  
Luke Czerniak ◽  
...  

Thermoacoustic Power Sensor (TAPS) technology offers the potential for self-powered, wireless measurement of nuclear reactor core operating conditions. TAPS are based on thermoacoustic engines, which harness thermal energy from fission reactions to generate acoustic waves by virtue of gas motion through a porous stack of thermally nonconductive material. TAPS can be placed in the core, where they generate acoustic waves whose frequency and amplitude are proportional to the local temperature and radiation flux, respectively. TAPS acoustic signals are not measured directly at the TAPS; rather, they propagate wirelessly from an individual TAPS through the reactor, and ultimately to a low-power receiver network on the vessel’s exterior. In order to rely on TAPS as primary instrumentation, reactor-specific models which account for geometric/acoustic complexities in the signal propagation environment must be used to predict the amplitude and frequency of TAPS signals at receiver locations. The reactor state may then be derived by comparing receiver signals to the reference levels established by predictive modeling. In this paper, we develop and experimentally benchmark a methodology for predictive modeling of the signals generated by a TAPS system, with the intent of subsequently extending these efforts to modeling of TAPS in a liquid sodium environment.


2014 ◽  
Vol 188 (2) ◽  
pp. 172-184 ◽  
Author(s):  
Scott R. Hunter ◽  
Nickolay V. Lavrik ◽  
Panos G. Datskos ◽  
Dwight Clayton

2018 ◽  
Vol 170 ◽  
pp. 08001 ◽  
Author(s):  
Loïc Barbot ◽  
Jean-François Villard ◽  
Stéphane Fourrez ◽  
Laurent Pichon ◽  
Hamid Makil

In the framework of the French National Research Agency program on nuclear safety and radioprotection, the ‘DIstributed Sensing for COrium Monitoring and Safety’ project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named ‘MATiSSe’. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reactor.


Author(s):  
Charles W. Allen

Irradiation effects studies employing TEMs as analytical tools have been conducted for almost as many years as materials people have done TEM, motivated largely by materials needs for nuclear reactor development. Such studies have focussed on the behavior both of nuclear fuels and of materials for other reactor components which are subjected to radiation-induced degradation. Especially in the 1950s and 60s, post-irradiation TEM analysis may have been coupled to in situ (in reactor or in pile) experiments (e.g., irradiation-induced creep experiments of austenitic stainless steels). Although necessary from a technological point of view, such experiments are difficult to instrument (measure strain dynamically, e.g.) and control (temperature, e.g.) and require months or even years to perform in a nuclear reactor or in a spallation neutron source. Consequently, methods were sought for simulation of neutroninduced radiation damage of materials, the simulations employing other forms of radiation; in the case of metals and alloys, high energy electrons and high energy ions.


Author(s):  
Gregory L. Finch ◽  
Richard G. Cuddihy

The elemental composition of individual particles is commonly measured by using energydispersive spectroscopic microanalysis (EDS) of samples excited with electron beam irradiation. Similarly, several investigators have characterized particles by using external monochromatic X-irradiation rather than electrons. However, there is little available information describing measurements of particulate characteristic X rays produced not from external sources of radiation, but rather from internal radiation contained within the particle itself. Here, we describe the low-energy (< 20 KeV) characteristic X-ray spectra produced by internal radiation self-excitation of two general types of particulate samples; individual radioactive particles produced during the Chernobyl nuclear reactor accident and radioactive fused aluminosilicate particles (FAP). In addition, we compare these spectra with those generated by conventional EDS.Approximately thirty radioactive particle samples from the Chernobyl accident were on a sample of wood that was near the reactor when the accident occurred. Individual particles still on the wood were microdissected from the bulk matrix after bulk autoradiography.


Author(s):  
Patrick Schukalla

Uranium mining often escapes the attention of debates around the nuclear industries. The chemical elements’ representations are focused on the nuclear reactor. The article explores what I refer to as becoming the nuclear front – the uranium mining frontier’s expansion to Tanzania, its historical entanglements and current state. The geographies of the nuclear industries parallel dominant patterns and the unevenness of the global divisions of labour, resource production and consumption. Clearly related to the developments and expectations in the field of atomic power production, uranium exploration and the gathering of geological knowledge on resource potentiality remains a peripheral realm of the technopolitical perceptions of the nuclear fuel chain. Seen as less spectacular and less associated with high-technology than the better-known elements of the nuclear industry the article thus aims to shine light on the processes that pre-figure uranium mining by looking at the example of Tanzania.


Sign in / Sign up

Export Citation Format

Share Document