The Effects of Walking on Gastrocnemius Cooling During an Ice Bag Treatment

2014 ◽  
Vol 19 (6) ◽  
pp. 34-40 ◽  
Author(s):  
Stephanie J. Guzzo ◽  
Susan W. Yeargin ◽  
Jeffery S. Carr ◽  
Timothy J. Demchak ◽  
Jeffrey E. Edwards

Context:Many athletic trainers use “ice to go” to treat their athletes. However, researchers have reported that icing a working muscle may negate intramuscular (IM) cooling.Objective:The purpose of our study was to determine the length of time needed to cool the gastrocnemius while walking followed by rest.Design:A randomized crossover study design was used.Setting:Exercise Physiology Laboratory.Patients or Other Participants:Nine healthy, physically active males and females (males 5, females 4; age 24.0 ± 2.0 years; height 174.0 ± 8.0 cm; weight 86.3 ± 6.5 kg; skinfold taken at center of gastrocnemius greatest girth, R leg 20.3 ± 4.4 mm, L leg 19.6 ± 4.1 mm) without lower extremity injury or cold allergy volunteered to complete the study.Intervention:Participants randomly experienced three treatment conditions on separate days: rest (R), walk for 15 minutes followed by rest (W15R), or walk for 30 minutes followed by rest (W30R). During each treatment, participants wore a 1 kg ice bag secured to their right gastrocnemius muscle. Participants walked at a 4.5km/hr pace on a treadmill during the W15R and W30R trials.Main Outcome Measures:A 1 × 3 within groups ANOVA was used to determine the effect of activity on cooling time needed for the gastrocnemius temperature to decrease 6 °C below baseline.Results:The R condition cooled faster (25.9 ± 5.5 min) than both W15R (33.7 ± 9.3 min;P= .002) and W30R (49.4 ± 8.4 min;P< .001). Average time to decrease 6 °C after W15R was 18.7 ± 9.3 minutes and after W30R was 19.4 ± 8.4 minutes.Conclusions:Clinicians should instruct their patients to stay and ice or to keep the ice on for an additional 20 minutes after they stop walking and begin to rest.

2011 ◽  
Vol 20 (3) ◽  
pp. 355-366 ◽  
Author(s):  
Robert Topp ◽  
Lee Winchester ◽  
Amber M. Mink ◽  
Jeremiah S. Kaufman ◽  
Dean E. Jacks

Context:Soft-tissue injuries are commonly treated with ice or menthol gels. Few studies have compared the effects of these treatments on blood flow and muscle strength.Objective:To compare blood flow and muscle strength in the forearm after an application of ice or menthol gel or no treatment.Design:Repeated-measures design in which blood-flow and muscle-strength data were collected from subjects under 3 treatment conditions.Setting:Exercise physiology laboratory.Participants:17 healthy adults with no impediment to the blood flow or strength in their right arm, recruited through word of mouth.Intervention:Three separate treatment conditions were randomly applied topically to the right forearm: no treatment, 0.5 kg of ice, or 3.5 mL of 3.5% menthol gel. To avoid injury ice was only applied for 20 min.Main Outcome Measures:At each data-collection session blood flow (mL/min) of the right radial artery was determined at baseline before any treatment and then at 5, 10, 15, and 20 min after treatment using Doppler ultrasound. Muscle strength was assessed as maximum isokinetic flexion and extension of the wrist at 30°/s 20, 25, and 30 min after treatment.Results:The menthol gel reduced (−42%, P < .05) blood flow in the radial artery 5 min after application but not at 10, 15, or 20 min after application. Ice reduced (−48%, P < .05) blood flow in the radial artery only after 20 min of application. After 15 min of the control condition blood flow increased (83%, P < .05) from baseline measures. After the removal of ice, wrist-extension strength did not increase per repeated strength assessment as it did during the control condition (9−11%, P < .05) and menthol-gel intervention (8%, P < .05).Conclusions:Menthol has a fast-acting, short-lived effect of reducing blood flow. Ice reduces blood flow after a prolonged duration. Muscle strength appears to be inhibited after ice application.


2021 ◽  
Vol 35 ◽  
pp. 41-48
Author(s):  
Marzena Malara ◽  
Anna Kęska ◽  
Joanna Tkaczyk ◽  
Grażyna Lutosławska

2020 ◽  
pp. 1-9
Author(s):  
Devin S. Kielur ◽  
Cameron J. Powden

Context: Impaired dorsiflexion range of motion (DFROM) has been established as a predictor of lower-extremity injury. Compression tissue flossing (CTF) may address tissue restrictions associated with impaired DFROM; however, a consensus is yet to support these effects. Objectives: To summarize the available literature regarding CTF on DFROM in physically active individuals. Evidence Acquisition: PubMed and EBSCOhost (CINAHL, MEDLINE, and SPORTDiscus) were searched from 1965 to July 2019 for related articles using combination terms related to CTF and DRFOM. Articles were included if they measured the immediate effects of CTF on DFROM. Methodological quality was assessed using the Physiotherapy Evidence Database scale. The level of evidence was assessed using the Strength of Recommendation Taxonomy. The magnitude of CTF effects from pre-CTF to post-CTF and compared with a control of range of motion activities only were examined using Hedges g effect sizes and 95% confidence intervals. Randomeffects meta-analysis was performed to synthesize DFROM changes. Evidence Synthesis: A total of 6 studies were included in the analysis. The average Physiotherapy Evidence Database score was 60% (range = 30%–80%) with 4 out of 6 studies considered high quality and 2 as low quality. Meta-analysis indicated no DFROM improvements for CTF compared with range of motion activities only (effect size = 0.124; 95% confidence interval, −0.137 to 0.384; P = .352) and moderate improvements from pre-CTF to post-CTF (effect size = 0.455; 95% confidence interval, 0.022 to 0.889; P = .040). Conclusions: There is grade B evidence to suggest CTF may have no effect on DFROM when compared with a control of range of motion activities only and results in moderate improvements from pre-CTF to post-CTF. This suggests that DFROM improvements were most likely due to exercises completed rather than the band application.


2017 ◽  
Vol 26 (3) ◽  
pp. 260-268
Author(s):  
Patti Syvertson ◽  
Emily Dietz ◽  
Monica Matocha ◽  
Janet McMurray ◽  
Russell Baker ◽  
...  

Context:Achilles tendinopathy is relatively common in both the general and athletic populations. The current gold standard for the treatment of Achilles tendinopathy is eccentric exercise, which can be painful and time consuming. While there is limited research on indirect treatment approaches, it has been proposed that tendinopathy patients do respond to indirect approaches in fewer treatments without provoking pain.Objective:To determine the effectiveness of using a treatment-based-classification (TBC) algorithm as a strategy for classifying and treating patients diagnosed with Achilles tendinopathy.Participants:11 subjects (mean age 28.0 ±15.37 y) diagnosed with Achilles tendinopathy.Design:Case series.Setting:Participants were evaluated, diagnosed, and treated at multiple clinics.Main Outcome Measures:Numeric Rating Scale (NRS), Disablement in the Physically Active Scale (DPA Scale), Victorian Institute of Sport Assessment–Achilles (VISA-A), Global Rating of Change (GRC), and Nirschl Phase Rating Scale were recorded to establish baseline scores and evaluate participant progress.Results:A repeated-measures ANOVA was conducted to analyze NRS scores from initial exam to discharge and at 1-mo follow-up. Paired t tests were analyzed to determine the effectiveness of using a TBC algorithm from initial exam to discharge on the DPA Scale and VISA-A. Descriptive statistics were evaluated to determine outcomes as reported on the GRC.Conclusion:The results of this case series provide evidence that using a TBC algorithm can improve function while decreasing pain and disability in Achilles tendinopathy participants.


Sports ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 5 ◽  
Author(s):  
Eva Apweiler ◽  
David Wallace ◽  
Sarah Stansfield ◽  
Dean Allerton ◽  
Meghan Brown ◽  
...  

This study examined whether consuming casein protein (CP) pre-sleep could accelerate acute recovery following muscle-damaging exercise. Thirty-nine active males and females performed 100 drop jumps in the morning, consumed their habitual diet during the day, and then within 30 min pre-bed consumed either ~40 g of CP (n = 19) or ~40 g of a carbohydrate-only control (CON) (n = 20). Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), pressure-pain threshold (PPT), subjective muscle soreness and the brief assessment of mood adapted (BAM+) were measured pre, 24 and 48 h following the drop jumps. MIVC decreased in CP and CON post-exercise, peaking at 24 h post (CP: −8.5 ± 3.5 vs. CON: −13.0 ± 2.9%, respectively); however, no between-group differences were observed (p = 0.486; ηp2 =0.02). There were also no group differences in the recovery of CMJ height, PPT and BAM+ (p > 0.05). Subjective muscle soreness increased post-exercise, but no group differences were present at 24 h (CP: 92 ± 31 mm vs. CON: 90 ± 46 mm) or 48 h (CP: 90 ± 44 mm vs. CON: 80 ± 58 mm) (p > 0.05). These data suggest that pre-bed supplementation with ~40 g of CP is no more beneficial than CON for accelerating the recovery following muscle-damaging exercise.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Emily L. Lawrence ◽  
Guilherme M. Cesar ◽  
Martha R. Bromfield ◽  
Richard Peterson ◽  
Francisco J. Valero-Cuevas ◽  
...  

For young adults, balance is essential for participation in physical activities but is often disrupted following lower extremity injury. Clinical outcome measures such as single limb balance (SLB), Y-balance (YBT), and the single limb hop and balance (SLHB) tests are commonly used to quantify balance ability following injury. Given the varying demands across tasks, it is likely that such outcome measures provide useful, although task-specific, information. But the extent to which they are independent and contribute to understanding the multiple contributors to balance is not clear. Therefore, the purpose of this study was to investigate the associations among these measures as they relate to the different contributors to balance. Thirty-seven recreationally active young adults completed measures including Vertical Jump, YBT, SLB, SLHB, and the new Lower Extremity Dexterity test. Principal components analysis revealed that these outcome measures could be thought of as quantifying the strength, multijoint coordination, and sensorimotor processing contributors to balance. Our results challenge the practice of using a single outcome measure to quantify the naturally multidimensional mechanisms for everyday functions such as balance. This multidimensional approach to, and interpretation of, multiple contributors to balance may lead to more effective, specialized training and rehabilitation regimens.


2017 ◽  
Vol 57 (1) ◽  
pp. 73-83
Author(s):  
Randy L Aldret ◽  
Brittany A Trahan ◽  
Greggory Davis ◽  
Brian Campbell ◽  
David M Bellar

AbstractThe purpose of this study was to determine the appropriateness of using an elastic hamstring assistance device to reduce perceived levels of soreness, increase isometric strength, increase passive range of motion, and decrease biomarkers of muscle damage after eccentric exercise, specifically, downhill running This study was conducted in a university exercise physiology laboratory placing sixteen apparently healthy males (X = 21.6 ± 2.5 years) into two groups using a pre-test/post-test design. Pre-intervention measures taken included participants’ body height, body mass, body fat, capillary blood samples, VO2max, isometric hamstring strength at 45 and 90 degrees of flexion and passive hamstring range of motion. Post-intervention measures included blood biomarkers, passive range of motion, the perceived level of soreness and isometric strength. An analysis of normality of data was initially conducted followed by multivariate analysis of variance (MANOVA) of hamstring strength at 45 and 90 degrees of flexion, blood myoglobin and passive range of motion of the hamstrings. Statistically significant changes were noted in subject-perceived muscle soreness and isometric strength at 90 degrees at the 24-hour post-exercise trial measure between the two groups. Results would suggest the findings could be explained by the decrease in muscle soreness from utilizing the device during the exercise trial. Further research should be conducted to address sample size issues and to determine if the results are comparable on different surfaces.


2011 ◽  
Vol 20 (2) ◽  
pp. 157-173 ◽  
Author(s):  
KyungMo Han ◽  
Mark D. Ricard

Context:Several researchers have suggested that improving evertor strength and peroneus longus reaction time may help alleviate the symptoms of chronic ankle instability and reduce the rate of recurrent ankle sprains.Objectives:To determine the effectiveness of a 4-wk elastic-resistance exercise-training program on ankle-evertor strength and peroneus longus latency in subjects with and without a history of ankle sprains (HAS).Design:Randomized controlled clinical trial.Participants:40 subjects (20 male, 20 female; 20 HAS, 20 healthy). Ten subjects (5 male and 5 female) from each of the HAS and healthy groups were randomly assigned to exercise or control groups.Interventions:4-directional elastic-resistance exercise training 2 times/wk for 4 wk.Main Outcome Measures:Ankle-evertor strength and peroneal muscle latency after sudden inversion were measured before training, after 4 wk of training, and 4 wk posttraining.Results:Four weeks of elastic-resistance exercise training did not elicit significant changes in 1-repetition-maximum ankle-evertor strength between the exercise and control groups (P = .262), HAS and healthy groups (P = .329), or males and females (P = .927). Elastic-resistance exercise training did not elicit significant changes in peroneus longus muscle latency between the exercise and control groups (P = .102), HAS and healthy groups (P = .996), or males and females (P = .947).Conclusions:The 4-wk elastic-resistance exercise training had no effect on ankle-evertor strength and reflex latency of the peroneus longus after unexpected ankle inversion.


2013 ◽  
Vol 22 (4) ◽  
pp. 272-278 ◽  
Author(s):  
Adam C. Knight ◽  
Wendi H. Weimar

Context:The dominant and nondominant legs respond asymmetrically during landing tasks, and this difference may occur during an inversion perturbation and provide insight into the role of ankle-evertor and -invertor muscle activity.Objective:To determine if there is a difference in the ratio of evertor to invertor activity between the dominant and nondominant legs and outer-sole conditions when the ankle is forced into inversion.Design:Repeated-measures single-group design.Setting:University laboratory.Participants:15 physically active healthy volunteers with no previous history of an ankle sprain or lower extremity surgery or fracture.Interventions:An outer sole with fulcrum was used to cause 25° of inversion at the subtalar joint after landing from a 27-cm step-down task. Participants performed 10 fulcrum trials on both the dominant and nondominant leg.Main Outcome Measures:The ratio of evertor to invertor muscle activity 200 ms before and 200 ms after the inversion perturbation was measured using electromyography. This ratio was the dependent variable. Independent variables included outer-sole condition (fulcrum, flat), leg (dominant, nondominant), and time (prelanding, postlanding). The data were analyzed with separate 2-way repeated-measures ANOVA, 1 for the prelanding ratios and 1 for the postlanding ratios.Results:For the postlanding ratios, the fulcrum outer sole had a significantly greater (P < .05) ratio than the flat outer sole, and the nondominant leg had a significantly greater (P < .05) ratio than the dominant leg.Conclusions:These results indicate that a greater evertor response is produced when the ankle is forced into inversion, and a greater response is produced for the nondominant leg, which may function better during a postural-stabilizing task than the dominant leg.


Sign in / Sign up

Export Citation Format

Share Document