scholarly journals Increasing Energy Flux to Maintain Diet-Induced Weight Loss

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2533 ◽  
Author(s):  
Christopher L. Melby ◽  
Hunter L. Paris ◽  
R. Drew Sayer ◽  
Christopher Bell ◽  
James O. Hill

Long-term maintenance of weight loss requires sustained energy balance at the reduced body weight. This could be attained by coupling low total daily energy intake (TDEI) with low total daily energy expenditure (TDEE; low energy flux), or by pairing high TDEI with high TDEE (high energy flux). Within an environment characterized by high energy dense food and a lack of need for movement, it may be particularly difficult for weight-reduced individuals to maintain energy balance in a low flux state. Most of these individuals will increase body mass due to an inability to sustain the necessary level of food restriction. This increase in TDEI may lead to the re-establishment of high energy flux at or near the original body weight. We propose that following weight loss, increasing physical activity can effectively re-establish a state of high energy flux without significant weight regain. Although the effect of extremely high levels of physical activity on TDEE may be constrained by compensatory reductions in non-activity energy expenditure, moderate increases following weight loss may elevate energy flux and encourage physiological adaptations favorable to weight loss maintenance, including better appetite regulation. It may be time to recognize that few individuals are able to re-establish energy balance at a lower body weight without permanent increases in physical activity. Accordingly, there is an urgent need for more research to better understand the role of energy flux in long-term weight maintenance.

2019 ◽  
Vol 150 (3) ◽  
pp. 458-463 ◽  
Author(s):  
Mathijs Drummen ◽  
Lea Tischmann ◽  
Blandine Gatta-Cherifi ◽  
Mikael Fogelholm ◽  
Anne Raben ◽  
...  

ABSTRACT Background Weight loss has been associated with adaptations in energy expenditure. Identifying factors that counteract these adaptations are important for long-term weight loss and weight maintenance. Objective The aim of this study was to investigate whether increased protein/carbohydrate ratio would reduce adaptive thermogenesis (AT) and the expected positive energy balance (EB) during weight maintenance after weight loss in participants with prediabetes in the postobese state. Methods In 38 participants, the effects of 2 diets differing in protein/carbohydrate ratio on energy expenditure and respiratory quotient (RQ) were assessed during 48-h respiration chamber measurements ∼34 mo after weight loss. Participants consumed a high-protein (HP) diet (n = 20; 13 women/7 men; age: 64.0 ± 6.2 y; BMI: 28.9 ± 4.0 kg/m 2) with 25:45:30% or a moderate-protein (MP) diet (n = 18; 9 women/9 men; age: 65.1 ± 5.8 y; BMI: 29.0 ± 3.8 kg/m 2) with 15:55:30% of energy from protein:carbohydrate:fat. Predicted resting energy expenditure (REEp) was calculated based on fat-free mass and fat mass. AT was assessed by subtracting measured resting energy expenditure (REE) from REEp. The main outcomes included differences in components of energy expenditure, substrate oxidation, and AT between groups. Results EB (MP = 0.2 ± 0.9 MJ/d; HP = −0.5 ± 0.9 MJ/d) and RQ (MP = 0.84 ± 0.02; HP = 0.82 ± 0.02) were reduced and REE (MP: 7.3 ± 0.2 MJ/d compared with HP: 7.8 ± 0.2 MJ/d) was increased in the HP group compared with the MP group (P < 0.05). REE was not different from REEp in the HP group, whereas REE was lower than REEp in the MP group (P < 0.05). Furthermore, EB was positively related to AT (rs = 0.74; P < 0.001) and RQ (rs = 0.47; P < 0.01) in the whole group of participants. Conclusions In conclusion, an HP diet compared with an MP diet led to a negative EB and counteracted AT ∼34 mo after weight loss, in participants with prediabetes in the postobese state. These results indicate the relevance of compliance to an increased protein/carbohydrate ratio for long-term weight maintenance after weight loss. The trial was registered at clinicaltrials.gov as NCT01777893.


1994 ◽  
Vol 77 (1) ◽  
pp. 366-372 ◽  
Author(s):  
M. I. Goran ◽  
J. Calles-Escandon ◽  
E. T. Poehlman ◽  
M. O'Connell ◽  
E. Danforth

This study was designed to examine effects of alterations in energy balance on adaptive changes in components of total energy expenditure (TEE). Nineteen young healthy males were studied during a 10-day sedentary energy balance baseline period and then randomly assigned to one of four 10-day treatment groups: 1) no change in energy intake (EI) or physical activity (PA; energy balance at low energy flux), 2) EI increased by 50% with no change in PA (positive energy balance), 3) TEE increased by 50% by increasing PA, matched by a 50% increase in EI (energy balance at high energy flux), and 4) TEE increased by 50% by increasing PA with no change in EI (negative energy balance). TEE was measured with doubly labeled water, resting metabolic rate (RMR) by indirect calorimetry, and thermic response to feeding (TEF) by indirect calorimetry; energy expenditure of physical activity (EEPA) was estimated by subtracting RMR, TEF, and prescribed PA from TEE. TEE was significantly increased by PA (by design) but not EI. There was a significant main effect of intake and a significant intake-by-activity interaction for changes in RMR. In post hoc analysis, RMR was significantly increased during positive energy balance and energy balance at high energy flux relative to change in RMR when energy balance was maintained at low energy flux. A significant increase in RMR was also noted during negative energy balance after adjustment for change in fat-free mass. There was no significant difference in change in RMR among the three treatment groups.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 69 (1) ◽  
pp. 34-38 ◽  
Author(s):  
C. R. Hankey

Treatments to induce weight loss for the obese patient centre on the achievement of negative energy balance. This objective can theoretically be attained by interventions designed to achieve a reduction in energy intake and/or an increase in energy expenditure. Such ‘lifestyle interventions’ usually comprise one or more of the following strategies: dietary modification; behaviour change; increases in physical activity. These interventions are advocated as first treatment steps in algorithms recommended by current clinical obesity guidelines. Medication and surgical treatments are potentially available to those unable to implement ‘lifestyle interventions’ effectively by achieving losses of between 5 kg and 10 kg. It is accepted that the minimum of 5% weight loss is required to achieve clinically-meaningful benefits. Dietary treatments differ widely. Successful weight loss is most often associated with quantification of energy intake rather than macronutrient composition. Most dietary intervention studies secure a weight loss of between 5 kg and 10 kg after intervention for 6 months, with gradual weight regain at 1 year where weight changes are 3–4 kg below the starting weight. Some dietary interventions when evaluated at 2 and 4 years post intervention report the effects of weight maintenance rather than weight loss. Specific anti-obesity medications are effective adjuncts to weight loss, in most cases doubling the weight loss of those given dietary advice only. Greater physical activity alone increases energy expenditure by insufficient amounts to facilitate clinically-important weight losses, but is useful for weight maintenance. Weight losses of between half and three-quarters of excess body weight are seen at 10 years post intervention with bariatric surgery, making this arguably the most effective weight-loss treatment.


2017 ◽  
Vol 7 (1) ◽  
pp. 31-38 ◽  
Author(s):  
D. Rossiou ◽  
S. Papadopoulou ◽  
I. Pagkalos ◽  
A. Kokkinopoulou ◽  
D. Petridis ◽  
...  

Purpose: To evaluate of the energy expenditure in 3 types of dance classes (ballet, Jazz, and contemporary), as well as of the daily energy balance depending on dance type. Materials and methods: 40 females attending dance classes with a median age of 21.0 (19.0-25.0) and 10 males with a median age of 27.0 (20.0-28.0) participated in this study. The energy cost of each dance class was measured using the BodyMedia SenseWear Sensor and total daily energy expenditure was evaluated using a 3-day recording of physical activity. The dietary intake was evaluated with a 3-day food diary recording. Statistical analysis was performed using the SPSS software. Results: Median energy expenditure varied from 306 (277-328) Kcals/class for contemporary dance to 327 (290-355) Kcals/class for ballet and 369 (333-394) Kcals/class for jazz for females with significant differences between contemporary and jazz classes. For males, energy expenditure was 508 (447-589) Kcals/class and 564 (538-593) Kcals/class for ballet and jazz classes, respectively. Females had lower values for all anthropometric measurements, energy intake, macronutrient intakes, and energy expenditure, compared with males. The anthropometric characteristics did not differ between dance types. Both female and male dance students were in a negative energy balance. Conclusions: The use of sensors such as BodyMedia SenseWear together with keeping daily diaries make measurement of physical activity in dancing reliable and accurate. Exercise expenditure differs across types of dance in females but not in males. Both sexes had inadequate energy and carbohydrate intakes.


1994 ◽  
Vol 76 (5) ◽  
pp. 1937-1945 ◽  
Author(s):  
T. J. Horton ◽  
H. J. Drougas ◽  
T. A. Sharp ◽  
L. R. Martinez ◽  
G. W. Reed ◽  
...  

Reports of low energy intakes in trained female athletes imply they have an increased energetic efficiency. To address this question, we determined how energy balance was achieved in endurance-trained females cyclists and lean controls (n=5 in each group). Daily energy expenditure was measured by using standardized physical activity protocols in a whole room calorimeter on two separate occasions: a cycling day and a noncycling day. Energy intake for weight maintenance was determined by a period of controlled feeding 5 days before and the day of each energy expenditure measurement. Energy balance was achieved in the cyclists on the cycling day while they consumed 2,900–3,000 kcal (their usual condition) and in controls on the noncycling day while they consumed 2,100–2,200 kcal (their usual condition). Total daily energy expenditure was not significantly different between the cyclists and controls on the noncycling day with both groups performing similar levels of activity. On the cycling day, daily energy expenditure was significantly greater in the cyclists vs. controls (P<0.03) as a result of their greater amount of cycling activity. Components of daily energy expenditure, i.e., resting metabolic rate and thermic effect of food and activity (noncycling), were not significantly different between groups. Overall, we found no significant increase in the energetic efficiency of endurance-trained female cyclists compared with controls.


1995 ◽  
Vol 73 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Klaas R. Westerterp ◽  
Jeroen H. H. L. M. Donkers ◽  
Elisabeth W. H. M. Fredrix ◽  
Piet oekhoudt

In adults, body mass (BM) and its components fat-free mass (FFM) and fat mass (FM) are normally regulated at a constant level. Changes in FM and FFM are dependent on energy intake (EI) and energy expenditure (EE). The body defends itself against an imbalance between EI and EE by adjusting, within limits, the one to the other. When, at a given EI or EE, energy balance cannot be reached, FM and FFM will change, eventually resulting in an energy balance at a new value. A model is described which simulates changes in FM and FFM using EI and physical activity (PA) as input variables. EI can be set at a chosen value or calculated from dietary intake with a database on the net energy of foods. PA can be set at a chosen multiple of basal metabolic rate (BMR) or calculated from the activity budget with a database on the energy cost of activities in multiples of BMR. BMR is calculated from FFM and FM and, if necessary, FFM is calculated from BM, height, sex and age, using empirical equations. The model uses existing knowledge on the adaptation of energy expenditure (EE) to an imbalance between EI and EE, and to resulting changes in FM and FFM. Mobilization and storage of energy as FM and FFM are functions of the relative size of the deficit (EI/EE) and of the body composition. The model was validated with three recent studies measuring EE at a fixed EI during an interval with energy restriction, overfeeding and exercise training respectively. Discrepancies between observed and simulated changes in energy stores were within the measurement precision of EI, EE and body composition. Thus the consequences of a change in dietary intake or a change in physical activity on body weight and body composition can be simulated.


2016 ◽  
Author(s):  
David Polidori ◽  
Arjun Sanghvi ◽  
Randy Seeley ◽  
Kevin D. Hall

AbstractObjectiveTo quantify the homeostatic feedback control of energy intake in response to long-term covert manipulation of energy balance in free-living humans.MethodsWe used a validated mathematical method to calculate energy intake changes during a 52 week placebo-controlled trial in 153 patients treated with canagliflozin, a sodium glucose co-transporter inhibitor that increases urinary glucose excretion thereby resulting in weight loss without patients being directly aware of the energy deficit. We analyzed the relationship between the body weight time course and the calculated energy intake changes using principles from engineering control theory. ResultsWe discovered that weight loss leads to a proportional homeostatic drive to increase energy intake above baseline by ~100 kcal/day per kg of lost weight – an amount more than 3-fold larger than the corresponding energy expenditure adaptations.ConclusionsWhile energy expenditure adaptations are often thought to be the main reason for slowing of weight loss and subsequent regain, feedback control of energy intake plays an even larger role and helps explain why long-term maintenance of a reduced body weight is so difficult.FundingThis research was supported by the Intramural Research Program of the NIH, National Institute of Diabetes & Digestive & Kidney Diseases, using data from a study sponsored by Janssen Research & Development, LLC.DisclosureD.P. is a full-time employee of Janssen Research & Development, LLC. K.D.H. reports patent pending on a method of personalized dynamic feedback control of body weight (US Patent Application No. 13/754,058; assigned to the NIH) and has received funding from the Nutrition Science Initiative to investigate the effects of ketogenic diets on human energy expenditure. R.S. is a paid consultant for Janssen, Novo Nordisk, Takeda, Daichii Sankyo, Novartis, Pfizer, Nestle, Circuit Therapeutics and Ethicon. R.S., also has received research support from Novo Nordisk, Ethicon, Sanofiand Boehringer Ingelheim. A.S. reports no conflicts of interest.What is already known about this subject?Human body weight is believed to be regulated by homeostatic feedback control of both energy intake and energy expenditure.Adaptations of energy expenditure to weight loss have been well-established, but the homeostatic control of energy intake has yet to be quantified.What this study addsWe provide the first quantification of the homeostatic control of energy intake in free-living humans.The increase in energy intake per kg of weight lost is several-fold larger than the known energy expenditure adaptations.Homeostatic control of energy intake is likely the primary reason why it is difficult to achieve and sustain large weight losses.


Endocrinology ◽  
2021 ◽  
Author(s):  
Ian E Gonzalez ◽  
Julliana Ramirez-Matias ◽  
Chunxia Lu ◽  
Warren Pan ◽  
Allen Zhu ◽  
...  

Abstract The paraventricular nucleus of the hypothalamus (PVH) is a heterogeneous collection of neurons that play important roles in modulating feeding and energy expenditure. Abnormal development or ablation of the PVH results in hyperphagic obesity and defects in energy expenditure whereas selective activation of defined PVH neuronal populations can suppress feeding and may promote energy expenditure. Here, we characterize the contribution of calcitonin receptor-expressing PVH neurons (CalcR PVH) to energy balance control. We used Cre-dependent viral tools delivered stereotaxically to the PVH of CalcR 2Acre mice to activate, silence and trace CalcR PVH neurons and determine their contribution to body weight regulation. Immunohistochemistry of fluorescently-labelled CalcR PVH neurons demonstrates that CalcR PVH neurons are largely distinct from several PVH neuronal populations involved in energy homeostasis; these neurons project to regions of the hindbrain that are implicated in energy balance control, including the nucleus of the solitary tract and the parabrachial nucleus. Acute activation of CalcR PVH neurons suppresses feeding without appreciably augmenting energy expenditure, whereas their silencing leads to obesity that may be due in part due to loss of PVH melanocortin-4 receptor (MC4R) signaling. These data show that CalcR PVH neurons are an essential component of energy balance neurocircuitry and their function is important for body weight maintenance. A thorough understanding of the mechanisms by which CalcR PVH neurons modulate energy balance might identify novel therapeutic targets for the treatment and prevention of obesity.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Rebecca A. Seguin ◽  
Sara C. Folta ◽  
Miriam E. Nelson ◽  
Karla L. Hanson ◽  
Andrea Z. LaCroix

Background. The repeated loss and regain of body weight, referred to as weight cycling, may be associated with negative health complications. Given today’s obesity epidemic and related interventions to address obesity, it is increasingly important to understand contexts and factors associated with weight loss maintenance. This study examined BMI among individuals who had previously participated in a 12-week, evidence-based, nationally disseminated nutrition and physical activity program designed for overweight and obese middle-aged and older women.Methods. Data were collected using follow-up surveys. Complete height and weight data were available for baseline, 12-week program completion (post-program) and follow-up (approximately 3 years later) for 154 women (response rate = 27.5%; BMI characteristics did not differ between responders and nonresponders).Results. Mean BMI decreased significantly from baseline to post-program (−0.5,P<0.001) and post-program to follow-up (−0.7,P<0.001). Seventy-five percent of survey respondents maintained or decreased BMI post-program to follow-up. Self-efficacy and social support for healthy eating behaviors (but not physical activity) were associated with BMI maintenance or additional weight loss.Conclusions. These findings support the durability of weight loss following participation in a relatively short-term intervention.


2012 ◽  
Vol 124 (4) ◽  
pp. 231-241 ◽  
Author(s):  
Priya Sumithran ◽  
Joseph Proietto

Although weight loss can usually be achieved by restricting food intake, the majority of dieters regain weight over the long-term. In the hypothalamus, hormonal signals from the gastrointestinal tract, adipose tissue and other peripheral sites are integrated to influence appetite and energy expenditure. Diet-induced weight loss is accompanied by several physiological changes which encourage weight regain, including alterations in energy expenditure, substrate metabolism and hormone pathways involved in appetite regulation, many of which persist beyond the initial weight loss period. Safe effective long-term strategies to overcome these physiological changes are needed to help facilitate maintenance of weight loss. The present review, which focuses on data from human studies, begins with an outline of body weight regulation to provide the context for the subsequent discussion of short- and long-term physiological changes which accompany diet-induced weight loss.


Sign in / Sign up

Export Citation Format

Share Document