Energy costs of feeding activities and energy expenditure of grazing sheep

1964 ◽  
Vol 15 (6) ◽  
pp. 969 ◽  
Author(s):  
N McCGraham

The energy costs of standing, of rumination, of eating prepared meals, and of grazing were determined in laboratory experiments by indirect calorimetry. Sheep with body weights ranging from 30 to 110 kg were used. Energy expenditure due to standing amounted to 0.34 ± 0.02 kcal/hr/kg body weight. The energy cost of rumination was 0.24 ± 0.03 kcal/hr/kg. Rate of food intake varied from 60 g dry matter/hr with sheep grazing a poor sward to 800 g/hr with sheep eating hay, but in general this did not affect energy expenditure appreciably. The cost of eating prepared meals of either fresh herbage or hay was 0.54 ± 0.05 kcal/hr/kg body weight. It tended to be greatest when rate of food intake was greatest. Energy expenditure due to grazing was also 0.54 ± 0.05 kcal/hr/kg, irrespective of the type of sward and associated grazing behaviour. It is estimated that muscular work, mainly standing and eating, could account for nearly 40% of the daily energy expenditure of a sheep at maintenance, grazing a poor but level pasture, with drinking water available, and only 10% of that of a caged animal. Such a grazing animal could thus have requirements over 40% greater than those of a caged one. With sheep on hilly pasture or a long way from water, the cost of walking could become a major item.

1997 ◽  
Vol 77 (3) ◽  
pp. 359-373 ◽  
Author(s):  
P. Haggarty ◽  
M. E. Valencia ◽  
G. McNeill ◽  
N. L. Gonzales ◽  
S. Y. Moya ◽  
...  

The present study was designed to investigate the interaction between body weight and energy expenditure in well-nourished individuals. Energy expenditure was determined during a 10 d highly controlled work programme in apparently well-nourished adult male construction workers with a wide range of body weights (mean weight: 63·9 (SD 11·0, range 46·7-80·1) kg, mean BMI: 22·5 (SD 3·8, range 16·7-28·9) kg/m2). Total energy expenditure (mean: 12·68 (SE 0·73) MJ/d or 1·78 (SE 0·07) x BMR) was determined using doubly-labelled water and the energy costs of work activities by Oxylog. The energy expenditure during work (mean: 5·75 (SE 0·29) MJ/day or 3·48 (SE 0·09) x BMR) was estimated from the energy costs of individual tasks and the time spent in those tasks. The energy expenditure during discretionary time (mean: 4·37 (SE 0·58) MJ/d or 1·49 (SE 0·17) x BMR) was calculated by subtracting occupation and sleep expenditure (taken as1 x BMR) from total expenditure. Food intake and discretionary time allocation were recorded by the subjects. The energy expenditure in the programmed work activities (expressed as a multiple of BMR) showed a significant increase (P=0·035) with increasing body weight, suggesting that the assumed constancy of BMR multiples across a wide range of body weights may not be valid. This assertion was supported by theoretical calculations based on empirically derived equations. In order to avoid errors which could be interpreted as metabolic ‘adaptation’ it may be necessary to take account of body weight when using the BMR-multiple approach to estimate energy requirements at low body weights.


1970 ◽  
Vol 24 (4) ◽  
pp. 1091-1107 ◽  
Author(s):  
O. G. Edholm ◽  
J. M. Adam ◽  
M. J. R. Healy ◽  
H. S. Wolff ◽  
R. Goldsmith ◽  
...  

1. The food intake of sixty-four infantry recruits was measured at six centres during 3 weeks of initial training. The daily energy expenditure was measured in thirty-five of these men.2. The mean daily consumption of the sixty-four subjects provided them with 3850 kcal (16110 kJ); the energy expenditure of the thirty-five subjects averaged 3750 kcal (15690 kJ).3. Serial auto- and cross-correlations of intake and expenditure were very small and there was no significant relationship between food intake and energy expenditure on the same day.4. The intakes and expenditures of different subjects at the same centre were not independent.5. There was a significant relationship between intake and expenditure for the whole period of the survey when results for all subjects were included. In three centres the correlation was high, +0.788 (P < 0.001), but was only + 0.083 (P < 0.5) in the remaining three centres.6. There was a positive but not significant correlation between body-weight and the average food intake of 6 d.7. There was a negative correlation between body-weight and calorie balance.8. Weight change and calorie balance over 1 week were related, the correlation averaging 0.40. There was a correlation of 0.32 between daily weight changes and calorie balance. A rather small amount of variation in calorie balance can be explained by contemporary changes in weight.


2020 ◽  
Vol 20 (8) ◽  
pp. 1262-1267
Author(s):  
Haojun Yang ◽  
Hanyang Liu ◽  
YuWen Jiao ◽  
Jun Qian

Background: G protein-coupled bile acid receptor (TGR5) is involved in a number of metabolic diseases. The aim of this study was to identify the role of TGR5 after Roux-en-Y gastric bypass (GBP). Methods: Wild type and TGR5 knockout mice (tgr5-/-) were fed a high-fat diet (HFD) to establish the obesity model. GBP was performed. The changes in body weight and food intake were measured. The levels of TGR5 and peptide YY (PYY) were evaluated by RT-PCR, Western blot, and ELISA. Moreover, the L-cells were separated from wild type and tgr5-/- mice. The levels of PYY in L-cells were evaluated by ELISA. Results: The body weights were significantly decreased after GBP in wild type mice (p<0.05), but not tgr5-/- mice (p>0.05). Food intake was reduced after GBP in wild type mice, but also not significantly affected in tgr5-/- mice (p>0.05). The levels of PYY were significantly increased after GBP compared with the sham group (p<0.05); however, in tgr5-/- mice the expression of PYY was not significantly affected (p>0.05). After INT-777 stimulation in L-cells obtained from murine intestines, the levels of PYY were significantly increased in L-cells tgr5+/+ (p<0.05). Conclusion: Our study suggests that GBP up-regulated the expression of TGR5 in murine intestines, and increased the levels of PYY, which further reduced food intake and decreased the body weight.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


1957 ◽  
Vol 188 (3) ◽  
pp. 435-438 ◽  
Author(s):  
M. J. Fregly ◽  
N. B. Marshall ◽  
J. Mayer

Goldthioglucose-obese mice cannot adjust their food intake to meet the increased energy requirements due to cold. At all ambient temperatures above 15°C the spontaneous running activity of these animals is less than that observed for nonobese controls. Activity of obese mice is maximal at 19°C and minimal at 15°C or lower. Body weights decrease during exposure to cold. In contrast to that of obese mice, running activity of nonobese controls is maximal at an ambient temperature of 25°C but nearly ceases at 15°C or lower. The food intake of these animals increases in the cold and remains elevated even at temperatures at which activity decreases. The body weight of nonobese controls is either maintained constant or increases during exposure to cold air.


2021 ◽  
Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershaeuser ◽  
Stefanie Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion Conclusively, we show that UCP1 does not protect against diet-induced obesity at thermoneutrality. Further we introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.


1988 ◽  
Vol 255 (4) ◽  
pp. R616-R621 ◽  
Author(s):  
J. O. Hill ◽  
J. C. Anderson ◽  
D. Lin ◽  
F. Yakubu

The effects of differences in meal frequency on body weight, body composition, and energy expenditure were studied in mildly food-restricted male rats. Two groups were fed approximately 80% of usual food intake (as periodically determined in a group of ad libitum fed controls) for 131 days. One group received all of its food in 2 meals/day and the other received all of its food in 10-12 meals/day. The two groups did not differ in food intake, body weight, body composition, food efficiency (carcass energy gain per amount of food eaten), or energy expenditure at any time during the study. Both food-restricted groups had a lower food intake, body weight gain, and energy expenditure than a group of ad libitum-fed controls. In conclusion, these results suggest that amount of food eaten, but not the pattern with which it is ingested, has a major influence on energy balance during mild food restriction.


Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5855-5864 ◽  
Author(s):  
Jonathan D. Roth ◽  
Heather Hughes ◽  
Eric Kendall ◽  
Alain D. Baron ◽  
Christen M. Anderson

Effects of amylin and pair feeding (PF) on body weight and metabolic parameters were characterized in diet-induced obesity-prone rats. Peripherally administered rat amylin (300 μg/kg·d, 22d) reduced food intake and slowed weight gain: approximately 10% (P &lt; 0.05), similar to PF. Fat loss was 3-fold greater in amylin-treated rats vs. PF (P &lt; 0.05). Whereas PF decreased lean tissue (P &lt; 0.05 vs. vehicle controls; VEH), amylin did not. During wk 1, amylin and PF reduced 24-h respiratory quotient (mean ± se, 0.82 ± 0.0, 0.81 ± 0.0, respectively; P &lt; 0.05) similar to VEH (0.84 ± 0.01). Energy expenditure (EE mean ± se) tended to be reduced by PF (5.67 ± 0.1 kcal/h·kg) and maintained by amylin (5.86 ± 0.1 kcal/h·kg) relative to VEH (5.77 ± 0.0 kcal/h·kg). By wk 3, respiratory quotient no longer differed; however, EE increased with amylin treatment (5.74 ± 0.09 kcal/·kg; P &lt; 0.05) relative to VEH (5.49 ± 0.06) and PF (5.38 ± 0.07 kcal/h·kg). Differences in EE, attributed to differences in lean mass, argued against specific amylin-induced thermogenesis. Weight loss in amylin and pair-fed rats was accompanied by similar increases arcuate neuropeptide Y mRNA (P &lt; 0.05). Amylin treatment, but not PF, increased proopiomelanocortin mRNA levels (P &lt; 0.05 vs. VEH). In a rodent model of obesity, amylin reduced body weight and body fat, with relative preservation of lean tissue, through anorexigenic and specific metabolic effects.


Sign in / Sign up

Export Citation Format

Share Document