The Effects of Preexercise Caffeinated Coffee Ingestion on Endurance Performance: An Evidence-Based Review

Author(s):  
Simon Higgins ◽  
Chad R. Straight ◽  
Richard D. Lewis

Endurance athletes commonly ingest caffeine as a means to enhance training intensity and competitive performance. A widely-used source of caffeine is coffee, however conflicting evidence exists regarding the efficacy of coffee in improving endurance performance. In this context, the aims of this evidence-based review were threefold: 1) to evaluate the effects of preexercise coffee on endurance performance, 2) to evaluate the effects of coffee on perceived exertion during endurance performance, and 3) to translate the research into usable information for athletes to make an informed decision regarding the intake of caffeine via coffee as a potential ergogenic aid. Searches of three major databases were performed using terms caffeine and coffee, or coffee-caffeine, and endurance, or aerobic. Included studies (n = 9) evaluated the effects of caffeinated coffee on human subjects, provided the caffeine dose administered, administered caffeine ≥ 45 min before testing, and included a measure of endurance performance (e.g., time trial). Significant improvements in endurance performance were observed in five of nine studies, which were on average 24.2% over controls for time to exhaustion trials, and 3.1% for time to completion trials. Three of six studies found that coffee reduced perceived exertion during performance measures significantly more than control conditions (p < .05). Based on the reviewed studies there is moderate evidence supporting the use of coffee as an ergogenic aid to improve performance in endurance cycling and running. Coffee providing 3–8.1 mg/kg (1.36–3.68 mg/lb) of caffeine may be used as a safe alternative to anhydrous caffeine to improve endurance performance.

2015 ◽  
Vol 40 (7) ◽  
pp. 725-733 ◽  
Author(s):  
Jacqueline Carvalho-Peixoto ◽  
Mirian Ribeiro Leite Moura ◽  
Felipe Amorim Cunha ◽  
Pablo Christiano B. Lollo ◽  
Walace David Monteiro ◽  
...  

The study analyzed the effect of an açai (Euterpe oleracea Mart.) functional beverage (AB) on muscle and oxidative stress markers, cardiorespiratory responses, perceived exertion, and time-to-exhaustion during maximal treadmill running. The beverage was developed as an ergogenic aid for athletes and contained 27.6 mg of anthocyanins per dose. Fourteen athletes performed 3 exercise tests: a ramp-incremental maximal exercise test and 2 maximal exercise bouts performed in 2 conditions (AB and without AB (control)) at 90% maximal oxygen uptake.Blood was collected at baseline and after maximal exercise in both conditions to determine biomarkers. AB increased time to exhaustion during short-term high-intensity exercise (mean difference: 69 s, 95% confidence interval = –296 s to 159 s, t = 2.2, p = 0.045), attenuating the metabolic stress induced by exercise (p < 0.05). AB also reduced perceived exertion and enhanced cardiorespiratory responses (p < 0.05). The AB may be a useful and practical ergogenic aid to enhance performance during high-intensity training.


Author(s):  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Eduardo Talavera ◽  
Lidia B. Alejo ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To compare the effectiveness of resistance power training (RPT, training with the individualized load and repetitions that maximize power output) and cycling power training (CPT, short sprint training) in professional cyclists. Methods: The participants (20 [2] y, peak oxygen uptake 78.0 [4.4] mL·kg−1·min−1) were randomly assigned to perform CPT (n = 8) or RPT (n = 10) in addition to their usual training regime for 7 weeks (2 sessions/wk). The training loads were continuously registered using the session rating of perceived exertion. The outcomes included endurance performance (8-min time trial and incremental test), as well as measures of muscle strength/power (1-repetition maximum and mean maximum propulsive power on the squat, hip thrust, and lunge exercises) and body composition (assessed by dual-energy X-ray absorptiometry). Results: No between-group differences were found for training loads or for any outcome (P > .05). Both interventions resulted in increased time-trial performance, as well as in improvements in other endurance-related outcomes (ie, ventilatory threshold, respiratory compensation point; P < .05). A significant or quasi-significant increase (P = .068 and .047 for CPT and RPT, respectively) in bone mineral content was observed after both interventions. A significant reduction in fat mass (P = .017), along with a trend (P = .059) toward a reduced body mass, was observed after RPT, but not CPT (P = .076 for the group × time interaction effect). Significant benefits (P < .05) were also observed for most strength-related outcomes after RPT, but not CPT. Conclusion: CPT and RPT are both effective strategies for the improvement of endurance performance and bone health in professional cyclists, although the latter tends to result in greater improvements in body composition and muscle strength/power.


2017 ◽  
Vol 12 (8) ◽  
pp. 1105-1110 ◽  
Author(s):  
Keely R. Hawkins ◽  
Sridevi Krishnan ◽  
Lara Ringos ◽  
Vanessa Garcia ◽  
Jamie A. Cooper

Using mouth rinse (MR) with carbohydrate during exercise has been shown to act as an ergogenic aid.Purpose:To investigate if nutritive or nonnutritive sweetened MR affects exercise performance and to assess the influence of sweetness intensity on endurance performance during a time trial (TT).Methods:This randomized, single-blinded study had 4 treatment conditions. Sixteen subjects (9 men, 7 women) completed a 12.8-km TT 4 different times. During each TT, subjects mouth-rinsed and expectorated a different solution at time 0 and every 12.5% of the TT. The 4 MR solutions were sucrose (S) (sweet taste and provides energy of 4 kcal/g), a lower-intensity sucralose (S1:1) (artificial sweetener that provides no energy but tastes sweet), a higher-intensity sucralose (S100:1), and water as control (C). Completion times for each TT, heart rate (HR), and ratings of perceived exertion (RPE) were also recorded.Results:Completion time for S was faster than for C (1:03:47 ± 00:02:17 vs 1:06:56 ± 00:02:18, respectively; P < .001) and showed a trend to be faster vs S100:1 (1:03:47 ± 00:02:17 vs 1:05:38 ± 00:02:12, respectively; P = .07). No other TT differences were found. Average HR showed a trend to be higher for S vs C (P = .08). The only difference in average or maximum RPE was for higher maximum RPE in C vs S1:1 (P = .02).Conclusion:A sweet-tasting MR did improve endurance performance compared with water in a significant manner (mean 4.5% improvement; 3+ min.); however, the presence of energy in the sweet MR appeared necessary since the artificial sweeteners did not improve performance more than water alone.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Elie-J. M. Fares ◽  
Bengt Kayser

Background. Oropharyngeal receptors signal presence of carbohydrate to the brain. Mouth rinses with a carbohydrate solution facilitate corticomotor output and improve time-trial performance in well-trained subjects in a fasted state. We tested for this effect in nonathletic subjects in fasted and nonfasted state.Methods. 13 healthy non-athletic males performed 5 tests on a cycle ergometer. After measuring maximum power output (Wmax), the subjects cycled four times at 60% Wmax until exhaustion while rinsing their mouth every 5 minutes with either a 6.4% maltodextrin solution or water, one time after an overnight fast and another after a carbohydrate rich breakfast.Results. Mouth rinsing with maltodextrin improved time-to-exhaustion in pre- and postprandial states. This was accompanied by reductions in the average and maximal rates of perceived exertion but no change in average or maximal heart rate was observed.Conclusions. Carbohydrate mouth rinsing improves endurance capacity in both fed and fasted states in non-athletic subjects.


Author(s):  
Noah M. A. d’Unienville ◽  
Henry T. Blake ◽  
Alison M. Coates ◽  
Alison M. Hill ◽  
Maximillian J. Nelson ◽  
...  

Abstract Background Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. Methods Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). Results One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. Conclusion Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. Other The review protocol was registered on the Open Science Framework (https://osf.io/u7nsj) and no funding was provided.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Susannah Scaroni ◽  
Amadeo Salvador ◽  
Colleen McKenna ◽  
Rafael Alamilla ◽  
Isabel Martinez ◽  
...  

Abstract Objectives Carbohydrate (CHO) ingestion is an established nutritional strategy to improve endurance performance, yet currently available products may contribute to gastrointestinal (GI) distress. Potatoes have a high-glycemic index, indicating that their CHO content is readily available. We aimed to compare the effects of ingesting potato purée (POT), commercial CHO gel (GEL), or a control (water, CTL) during cycling on GI Symptoms and affective indices in trained athletes. Methods In a randomized crossover study, twelve trained cyclists (9 M and 3F; 30.5 ± 8.7y; 70.6 ± 7.6 kg; 1.70 ± 7 cm; 60.7 ± 8.9 mL/kg/min) completed a 2 h cycling challenge (60–85%VO2max) followed by a 6 kJ/kg time trial. Cyclists were randomly assigned to consume POT, GEL, or CTL during the challenge. Rating of perceived exertion (RPE), GI symptoms, and affective responses (Feeling Scale −5/+5) were collected throughout the challenge via visual analog scales. Differences between treatments were assessed by mixed model analysis of variance using time and condition as a fixed factor and subject as a random factor. All data represent mean ± standard deviation. Results RPE was not different between POT, GEL, or CTL condition at the end of the cycling challenge (POT: 17 ± 1; GEL: 17 ± 1, CTL: 18 ± 1, P > 0.05). Higher GI symptoms (P < 0.01) were observed at the end of the challenge during POT condition (15 ± 3%) when compared to GEL (8 ± 3%) and CTL (7 ± 3%), with no significant difference in these symptoms prior to this time. FS response significantly increased (P = 0.04) during POT trial (2 ± 2) compared to GEL (0 ± 0.2) and CTL (0 ± 2) conditions at end of the challenge. Conclusions While POT ingestion resulted in greater GI distressed compared to CHO gel, cyclists perceived the exertion to be similar and even reported feeling more pleasant after POT ingestion in endurance exercise. Funding Sources Alliance for Potato Research and Education.


Author(s):  
John L. Ivy ◽  
Lynne Kammer ◽  
Zhenping Ding ◽  
Bei Wang ◽  
Jeffrey R. Bernard ◽  
...  

Context:Not all athletic competitions lend themselves to supplementation during the actual event, underscoring the importance of preexercise supplementation to extend endurance and improve exercise performance. Energy drinks are composed of ingredients that have been found to increase endurance and improve physical performance.Purpose:The purpose of the study was to investigate the effects of a commercially available energy drink, ingested before exercise, on endurance performance.Methods:The study was a double-blind, randomized, crossover design. After a 12-hr fast, 6 male and 6 female trained cyclists (mean age 27.3 ± 1.7 yr, mass 68.9 ± 3.2 kg, and VO2 54.9 ± 2.3 ml · kg–1 · min–1) consumed 500 ml of either flavored placebo or Red Bull Energy Drink (ED; 2.0 g taurine, 1.2 g glucuronolactone, 160 mg caffeine, 54 g carbohydrate, 40 mg niacin, 10 mg pantothenic acid, 10 mg vitamin B6, and 10 μg vitamin B12) 40 min before a simulated cycling time trial. Performance was measured as time to complete a standardized amount of work equal to 1 hr of cycling at 70% Wmax.Results:Performance improved with ED compared with placebo (3,690 ± 64 s vs. 3,874 ± 93 s, p < .01), but there was no difference in rating of perceived exertion between treatments. β-Endorphin levels increased during exercise, with the increase for ED approaching significance over placebo (p = .10). Substrate utilization, as measured by open-circuit spirometry, did not differ between treatments.Conclusion:These results demonstrate that consuming a commercially available ED before exercise can improve endurance performance and that this improvement might be in part the result of increased effort without a concomitant increase in perceived exertion.


1992 ◽  
Vol 2 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Randall L. Wilber ◽  
Robert J. Moffatt

Ten trained male runners performed a treadmill exercise test at 80%under two experimental conditions, carbohydrate (CHO, 7% carbohydrate) and placebo (P), to determine the effect of carbohydrate ingestion on endurance performance (treadmill run time), blood glucose concentration, respiratory exchange ratio (RER), and subjective ratings of perceived exertion (RPE). Treatment order was randomized and counterbalanced and test solutions were administered double-blind. Ingestion took place 5 min preexercise (250 ml) and at 15-min intervals during exercise (125 ml). Performance was enhanced by 29.4% (p~ 0.05) during CHO (115 ±25 min) compared to P (92 ± 27 min). Blood glucose concentration was significantly greater during CHO (5.6 ± 0.9 mM) relative to P (5.0 ±0.7 mM). There was a significant increase in mean RER following CHO ingestion (.94±.01) compared to P (.90±.01). Average RPE was significantly less during CHO (14.5±2.3) relative to P (15.4±2.4). These data suggest that time to exhaustion of high-intensity treadmill exercise is delayed as a result of carbohydrate ingestion and that this effect is mediated by favorable alterations in blood glucose concentration and substrate utilization.


Author(s):  
Chloe Gao ◽  
Saurabh Gupta ◽  
Taranah Adli ◽  
Winston Hou ◽  
Reid Coolsaet ◽  
...  

Abstract Background Nitrate supplementation is thought to improve performance in endurance sports. Objective To meta-analyze studies evaluating the effect of nitrate supplementation on endurance sports performance among adults. Data sources We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Web of Science and CINAHL without language restrictions. Methods We included studies that: 1) compared nitrate supplementation with placebo; 2) enrolled adults engaging in an endurance-based activity; and 3) reported a performance measure or surrogate physiologic outcome. We evaluated risk of bias using the Cochrane Collaboration tool and pooled data with a random-effects model. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to evaluate confidence in estimates. Results We included 73 studies (n = 1061). Nitrate supplementation improved power output (MD 4.6 watts, P < 0.0001), time to exhaustion (MD 25.3 s, P < 0.00001), and distance travelled (MD 163.7 m, P = 0.03). We found no significant difference on perceived exertion, time trial performance and work done. Nitrate supplementation decreased VO2 (MD − 0.04 L/min, P < 0.00001) but had no significant effect on VO2max or blood lactate levels. Conclusion The available evidence suggests that dietary nitrate supplementation benefits performance-related outcomes for endurance sports.


2015 ◽  
Vol 63 (1) ◽  

The intake of caffeine from tablets, coffee and energy drinks has shown to benefit endurance performance, whereas the effect of caffeine bars has not been investigated yet. Therefore, the aim of the study was to examine endurance performance, metabolism and perceived exertion following the co-ingestion of caffeine and carbohydrates in the form of bars. Using a randomized single-blind cross-over placebo-controlled design, nine male, trained cyclists completed endurance exercises on a cycling ergometer under the following conditions: ingestion of water (H2O), placebo bars (PLA) and caffeine bars (CAF; 5 mg caffeine/kg bodyweight), respectively, 45 min prior to the test. After 40 min at a constant intensity of 75% VO2max, which was assessed in a previously performed incremental test with spirometry, load was increased 10 W/min until exhaustion. In comparison to PLA and H2O, the intake of CAF resulted in a higher maximal power and longer time to exhaustion (p=0.002). Surprisingly, concentration of free fatty acids was lower at exhaustion (p=0.004), whereas blood lactate levels (p=0.021) and heart rate (p=0.008) were significantly higher after CAF. Furhermore, subjects reported lower received perception of effort at warm-up (0.034), 30 min (p=0.026) and 40 min (p=0.041) only when they ingested CAF previously. Caffeine bars have been proven as useful pre-exercise supplements, which induce temporary performance benefits. The underlying mechanism was a delayed perception of fatigue rather than an increased lipolysis.


Sign in / Sign up

Export Citation Format

Share Document