Reduced Fatigue in Passive Versus Active Recovery: An Examination of Repeated-Change-of-Direction Sprints in Basketball Players

2018 ◽  
Vol 13 (8) ◽  
pp. 1034-1041
Author(s):  
Maria C. Madueno ◽  
Vincent J. Dalbo ◽  
Joshua H. Guy ◽  
Kate E. Giamarelos ◽  
Tania Spiteri ◽  
...  

Purpose: To investigate the physiological and performance effects of active and passive recovery between repeated-change-of-direction sprints. Methods: Eight semiprofessional basketball players (age: 19.9 [1.5] y; stature: 183.0 [9.6] cm; body mass: 77.7 [16.9] kg; body fat: 11.8% [6.3%]; and peak oxygen consumption: 46.1 [7.6] mL·kg−1·min−1) completed 12 × 20-m repeated-change-of-direction sprints (Agility 5-0-5 tests) interspersed with 20 seconds of active (50% maximal aerobic speed) or passive recovery in a randomized crossover design. Physiological and perceptual measures included heart rate, oxygen consumption, blood lactate concentration, and rating of perceived exertion. Change-of-direction speed was measured during each sprint using the change-of-direction deficit (CODD), with summed CODD time and CODD decrement calculated as performance measures. Results: Average heart rate (7.3 [6.4] beats·min−1; P = .010; effect size (ES) = 1.09; very likely) and oxygen consumption (4.4 [5.0] mL·kg−1·min−1; P = .12; ES = 0.77; unclear) were moderately greater with active recovery compared with passive recovery across sprints. Summed CODD time (0.87 [1.01] s; P = .07; ES = 0.76, moderate; likely) and CODD decrement (8.1% [3.7%]; P < .01; ES = 1.94, large; almost certainly) were higher with active compared with passive recovery. Trivial–small differences were evident for rating of perceived exertion (P = .516; ES = 0.19; unclear) and posttest blood lactate concentration (P = .29; ES = 0.40; unclear) between recovery modes. Conclusions: Passive recovery between repeated-change-of-direction sprints may reduce the physiological stress and fatigue encountered compared with active recovery in basketball players.

2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


2018 ◽  
Vol 13 (9) ◽  
pp. 1215-1222 ◽  
Author(s):  
Theo Ouvrard ◽  
Alain Groslambert ◽  
Gilles Ravier ◽  
Sidney Grosprêtre ◽  
Philippe Gimenez ◽  
...  

Purpose: To identify the impact of a leading teammate in front of a cyclist on psychological, physiological, biomechanical, and performance parameters during an uphill maximal effort. Methods: After familiarization, 12 well-trained competitive cyclists completed 2 uphill time trials (UTTs, 2.7 km at 7.4%) in randomized order; that is, 1 performed alone (control condition) and 1 followed a simulated teammate during the entire UTT (leader condition). Performance (UTT time) and mean power output (PO) were recorded for each UTT. For physiological parameters, mean heart rate and postexercise blood lactate concentration were recorded. Psychological parameters (rating of perceived exertion, pleasure, and attentional focus) were collected at the end of each trial. Results: Performance (UTT time) significantly improved by 4.2% (3.1%) in the leader condition, mainly due to drafting decrease of the aerodynamic drag (58% of total performance gains) and higher end spurt (+9.1% [9.1%] of mean PO in the last 10% of the UTT). However, heart rate and postexercise blood lactate concentration were not significantly different between conditions. From a psychological aspect, higher pleasure was observed in the leader condition (+41.1% [51.7%]), but attentional focus was not significantly different. Conclusions: The presence of a leading teammate during uphill cycling had a strong impact on performance, enabling higher speed for the same mean PO and greater end spurt. These results explain why the best teams competing for the general classification of the most prestigious and contested races like the Grand Tours tend to always protect their leader with teammates during decisive ascents.


2020 ◽  
pp. 1-8
Author(s):  
Jeanette M. Ricci ◽  
Todd A. Astorino ◽  
Katharine D. Currie ◽  
Karin A. Pfeiffer

The majority of studies examining children’s responses to high-intensity interval exercise primarily utilized running; however, this modality does not require/include other important aspects of physical activity including muscular fitness. Purpose: To compare acute responses between a body weight resistance exercise circuit (CIRC) and treadmill-based (TM) high-intensity interval exercise. Method: A total of 17 boys (age = 9.7 [1.3] y) completed a graded exercise test to determine peak heart rate, peak oxygen uptake (VO2peak), and maximal aerobic speed. Sessions were randomized and counterbalanced. CIRC required 2 sets of 30-second maximal repetitions of 4 exercises. TM included eight 30-second bouts of running at 100% maximal aerobic speed. Both included 30-second active recovery between bouts. Blood lactate concentration was measured preexercise and postexercise. Rating of perceived exertion, affective valence, and enjoyment were recorded preexercise, after intervals 3 and 6, and postexercise. Results: Participants attained 88% (5%) peak heart rate and 74% (9%) VO2peak for CIRC and 89% (4%) peak heart rate and 81% (6%) VO2peak for TM, with a significant difference in percentage of VO2peak (P = .003) between protocols. Postexercise blood lactate concentration was higher following CIRC (5.0 [0.7] mM) versus TM (2.0 [0.3] mM) (P < .001). Rating of perceived exertion, affective valence, and enjoyment responses did not differ between protocols (P > .05). Conclusion: HR responses were near maximal during CIRC, supporting that this body-weight circuit is representative of high-intensity interval exercise.


2021 ◽  
Vol 6 (2) ◽  
pp. 44
Author(s):  
Stefano Benítez-Flores ◽  
Carlos A. Magallanes ◽  
Cristine Lima Alberton ◽  
Todd A. Astorino

The aim of this study was to compare the acute responses to three time-matched exercise regimens. Ten trained adults (age, maximum oxygen consumption (VO2max), and body mass index (BMI) = 25.9 ± 5.6 yr, 50.9 ± 5.4 mL·kg−1·min−1, and 22.1 ± 1.8 kg·m−2) completed sprint interval training (SIT) requiring 14 × 5 s efforts with 35 s of recovery, high-intensity interval training (HIIT) consisting of 18 × 15 s efforts at ~90% of peak heart rate (HRpeak) with 15 s of recovery, and vigorous continuous training (CT) consisting of 8.75 min at ~85 %HRpeak, in randomized order. Heart rate, blood lactate concentration, rating of perceived exertion, affective valence, and enjoyment were monitored. Moreover, indices of neuromuscular function, autonomic balance, diet, mental stress, incidental physical activity (PA), and sleep were measured 24 h after each session to analyze the magnitude of recovery. Both HIIT and CT exhibited a greater %HRpeak and time ≥ 90 %HRpeak than SIT (p < 0.05). Blood lactate and rating of perceived exertion were higher in response to SIT and HIIT vs. CT (p < 0.05); however, there were no differences in enjoyment (p > 0.05). No differences were exhibited in any variable assessed along 24 h post-exercise between conditions (p > 0.05). These data suggest that HIIT and CT accumulate the longest duration at near maximal intensities, which is considered a key factor to enhance VO2max.


2019 ◽  
Vol 14 (10) ◽  
pp. 1331-1337 ◽  
Author(s):  
Aaron T. Scanlan ◽  
Robert Stanton ◽  
Charli Sargent ◽  
Cody O’Grady ◽  
Michele Lastella ◽  
...  

Purpose: To quantify and compare internal and external workloads in regular and overtime games and examine changes in relative workloads during overtime compared with other periods in overtime games in male basketball players. Methods: Starting players for a semiprofessional male basketball team were monitored during 2 overtime games and 2 regular games (nonovertime) with similar contextual factors. Internal (rating of perceived exertion and heart-rate variables) and external (PlayerLoad and inertial movement analysis variables) workloads were quantified across games. Separate linear mixed-models and effect-size analyses were used to quantify differences in variables between regular and overtime games and between game periods in overtime games. Results: Session rating-of-perceived-exertion workload (P = .002, effect size 2.36, very large), heart-rate workload (P = .12, 1.13, moderate), low-intensity change-of-direction events to the left (P = .19, 0.95, moderate), medium-intensity accelerations (P = .12, 1.01, moderate), and medium-intensity change-of-direction events to the left (P = .10, 1.06, moderate) were higher during overtime games than during regular games. Overtime periods also exhibited reductions in relative PlayerLoad (first quarter P = .03, −1.46, large), low-intensity accelerations (first quarter P = .01, −1.45, large; second quarter P = .15, −1.22, large), and medium-intensity accelerations (first quarter P = .09, −1.32, large) compared with earlier periods. Conclusions: Overtime games disproportionately elevate perceptual, physiological, and acceleration workloads compared with regular games in starting basketball players. Players also perform at lower external intensities during overtime periods than earlier quarters during basketball games.


2015 ◽  
Vol 40 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Vicente Javier Clemente-Suárez

Many studies have researched the psychophysiological response and energy balance of athletes in numerous ultraendurance probes, but none has investigated an ultraendurance mountain running event. The current study aims to analyze changes in blood lactate concentration, rating of perceived exertion, heart rate, heart rate variability, and energy balance after the performance of an ultraendurance mountain running event. The parameters in the 6 participants who finished the event were analyzed (age, 30.8 ± 3.1 years; height, 176.2 ± 8.6 cm; body mass, 69.2 ± 3.7 kg). The race covered 54 km, with 6441 m of altitude change, 3556 m downhill and 2885 m uphill. The athletes completed together the race in 14 h and 6 min. After the ultraendurance event, the athletes presented a negative energy balance of 4732 kcal, a blood lactate concentration of 2.8 ± 0.3 mmol/L, a heart rate mean/heart rate maximum ratio of 0.64, a heart rate mean of 111.4 ± 5.9 beats/min, a decrease in vagal modulation, and an increase in sympathetic modulation, and recorded 19.5 ± 1.5 points on the 6–20 rating of perceived exertion scale. The event was a stressful stimulus for the athletes despite the low intensity measured by blood lactate concentration and heart rate. The results obtained may be used by coaches as a reference parameter of heart rate, heart rate variability, rating of perceived exertion, and lactate concentration to develop specific training programs. In addition, the energy balance data obtained in this research may improve nutritional intake strategies.


2018 ◽  
Vol 35 (1) ◽  
pp. 76-92 ◽  
Author(s):  
Mário A.M. Simim ◽  
Gustavo R. da Mota ◽  
Moacir Marocolo ◽  
Bruno V.C. da Silva ◽  
Marco Túlio de Mello ◽  
...  

We investigated the match demands (distances covered and acute physiological responses) of amputee soccer and its impact on muscular endurance and power. Measures such as heart rate, blood lactate concentration, subjective rating of perceived exertion, and time-motion characteristics were recorded in 16 Brazilian amputee soccer players during matches. Before and after matches, players completed a battery of tests: push-ups, countermovement vertical jump performance, and medicine ball throwing. Small differences were found between the first and second half for the distance covered in total and across various speed categories. Heart rate responses, blood lactate concentrations, and peak speed did not differ between halves, and all neuromuscular performance measures decreased after the match particularly after push-ups, although the rating of perceived exertion increased markedly compared with prematches. Although match physical performances were consistent across halves, the overall demands impaired test performance, especially for upper limb and closed kinetic chain exercise.


2010 ◽  
Vol 25 (2) ◽  
pp. 66-71
Author(s):  
Eric J Drinkwater ◽  
Christopher J Klopper

This study investigated the effects of fatigue on performance quality induced by a prolonged musical performance. Ten participants prepared 10 min of repertoire for their chosen wind instrument that they played three times consecutively. Prior to the performance and within short breaks between performances, researchers collected heart rate, respiratory rate, blood pressure, blood lactate concentration, rating of perceived exertion (RPE), and rating of anxiety. All performances were audio recorded and later analysed for performance errors. Reliability in assessing performance errors was assessed by typical error of measure (TEM) of 15 repeat performances. Results indicate all markers of physical stress significantly increased by a moderate to large amount (4.6 to 62.2%; d = 0.50 to 1.54) once the performance began, while heart rate, respirations, and RPE continued to rise by a small to large amount (4.9 to 23.5%; d = 0.28 to 0.93) with each performance. Observed changes in performance between performances were well in excess of the TEM of 7.4%. There was a significant small (21%, d = 0.43) decrease in errors after the first performance; after the second performance, there was a significant large increase (70.4%, d = 1.14). The initial increase in physiological stress with corresponding decrease in errors after the first performance likely indicates “warming up,” while the continued increase in markers of physical stress with dramatic decrement in performance quality likely indicates fatigue. Musicians may consider the relevance of physical fitness to maintaining performance quality over the duration of a performance.


2021 ◽  
Vol 77 (1) ◽  
pp. 97-105
Author(s):  
Per-Øyvind Torvik ◽  
Johan Persson ◽  
Roland van den Tillaar

Abstract The aims of this study were to compare performance with physiological and perceptual responses on steep uphill inclines between double poling and diagonal stride and to investigate the effects of pole length when double poling. Eight male, competitive cross-country skiers (22 ± 1.1 yrs, peak oxygen uptake (VO2peak) in the diagonal stride: 69.4 ± 5.5 ml·kg-1·min-1) performed four identical tests, one in the diagonal stride, and three in double poling with different pole lengths (self-selected, self-selected -5 cm and self-selected +10 cm). Each test was conducted at a fixed speed (10 km/h), with inclination rising by 1%, starting with 7%, each until voluntary exhaustion. VO2peak, the heart rate, blood lactate concentration, and the rating of perceived exertion were determined for each pole length in each test. The peak heart rate (p < 0.001) and VO2peak (p = 0.004) were significantly higher in the diagonal stride test compared with double poling with all pole lengths. Time to exhaustion (TTE) differed significantly between all four conditions (all p < 0.001), with the following order from the shortest to the longest TTE: short poles, normal poles and long poles in double poling, and the diagonal stride. Consequently, a significantly higher slope inclination was reached (p < 0.001) using the diagonal stride (17%) than for double poling with long poles (14%), normal (13%) and short (13%) poles. The current study showed better performance and higher VO2peak in the diagonal stride compared to double poling in steep uphill terrain, demonstrating the superiority of the diagonal stride for uphill skiing. However, in double poling, skiers achieved improved performance due to greater skiing efficiency when using long poles, compared to normal and short poles.


2010 ◽  
Vol 20 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Nicholas Gant ◽  
Ajmol Ali ◽  
Andrew Foskett

Carbohydrate and caffeine are known to independently improve certain aspects of athletic performance. However, less is understood about physiological and performance outcomes when these compounds are coingested in a rehydration and carbohydrate-replacement strategy. The aim of this study was to examine the influence of adding a moderate dose of caffeine to a carbohydrate solution during prolonged soccer activity. Fifteen male soccer players performed two 90-min intermittent shuttle-running trials. They ingested a carbohydrate-electrolyte solution (CON) providing a total of 1.8 g/kg body mass (BM) of carbohydrate or a similar solution with added caffeine (CAF; 3.7 mg/kg BM). Solutions were ingested 1 hr before exercise and every 15 min during the protocol. Soccer passing skill and countermovement-jump height (CMJ) were quantified before exercise and regularly during exercise. Sprinting performance, heart rate, blood lactate concentration (La) and the subjective experiences of participants were measured routinely. Mean 15-m sprint time was faster during CAF (p = .04); over the final 15 min of exercise mean sprint times were CAF 2.48 ± 0.15 s vs. CON 2.59 ± 0.2 s. Explosive leg power (CMJ) was improved during CAF (52.9 ± 5.8 vs. CON 51.7 ± 5.7 cm, p = .03). Heart rate was elevated throughout CAF, and ratings of pleasure were significantly enhanced. There were no significant differences in passing skill, rating of perceived exertion, La, or body-mass losses between trials. The addition of caffeine to the carbohydrate-electrolyte solution improved sprinting performance, countermovement jumping, and the subjective experiences of players. Caffeine appeared to offset the fatigue-induced decline in self-selected components of performance.


Sign in / Sign up

Export Citation Format

Share Document